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Automatic image annotation involves automatically assigning useful keywords to an unlabelled image. The
major goal is to bridge the so-called semantic gap between the available image features and the keywords
that people might use to annotate images. Although different people will most likely use different words to
annotate the same image, most people can use object or scene labels when searching for images.

We propose a two-tier annotation model where the first tier corresponds to object-level and the
second tier to scene-level annotation. In the first tier, images are annotated with labels of objects present in
them, using multi-label classification methods on low-level features extracted from images. Scene-level
annotation is performed in the second tier, using the originally developed inference-based algorithms for

Knowledge representation
Inference algorithms

Fuzzy Petri Net

Multi-label image classification

annotation refinement and for scene recognition. These algorithms use a fuzzy knowledge representation
scheme based on Fuzzy Petri Net, KRFPNs, that is defined to enable reasoning with concepts useful for
image annotation. To define the elements of the KRFPNs scheme, novel data-driven algorithms for
acquisition of fuzzy knowledge are proposed.
The proposed image annotation model is evaluated separately on the first and on the second tier using
a dataset of outdoor images. The results outperform the published results obtained on the same image
collection, both on the object-level and on scene-level annotation. Different subsets of features composed
of dominant colours, image moments, and GIST descriptors, as well as different classification methods
(RAKEL, ML-kNN and Naive Bayes), were tested in the first tier. The results of scene level annotation in the
second tier are also compared with a common classification method (Naive Bayes) and have shown
superior performance. The proposed model enables the expanding of image annotation with new concepts
regardless of their level of abstraction.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Image retrieval, search and organisation have become a problem on account of the huge number of images produced daily. In order to
simplify these tasks, different approaches for image retrieval have been proposed that can be roughly divided into those that compare
visual content (content-based image retrieval) and those that use text descriptions of images (text-based image retrieval) [27,7].

Image retrieval based on text has appeared to be easier, more natural and more suitable for people in most everyday cases. This is
because it is much simpler to write a keyword-based query than to provide image examples, and it is likely that the user does not have an
example image of the query. Besides, images corresponding to the same keywords can be very diverse. For example, if a person has an
image of a town, but wants a different view, content-based retrieval would not be the best choice because most of the results would be too
similar to the image he already has. On the other hand, very diverse images can be retrieved with a keyword query, e.g. for the keyword
Dubrovnik, different views of the town can be retrieved (Fig. 1.).

To be able to retrieve images using text, they must be labelled or described in the surrounding text. However, most images are not.
Since manually providing image annotation is a tedious and expensive task, especially when dealing with a large number of images,
automatic image annotation has appeared as a solution.

* Correspondence to: R. Matej¢i¢ 2, 51000 Rijeka, Croatia. Tel.: +385 51584710.
E-mail address: marinai@uniri.hr (M. Ivasic-Kos).

http://dx.doi.org/10.1016/j.patcog.2015.10.017
0031-3203/© 2015 Elsevier Ltd. All rights reserved.


www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2015.10.017
http://dx.doi.org/10.1016/j.patcog.2015.10.017
http://dx.doi.org/10.1016/j.patcog.2015.10.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.10.017&domain=pdf
mailto:marinai@uniri.hr
http://dx.doi.org/10.1016/j.patcog.2015.10.017

288 M. Ivasic-Kos et al. / Pattern Recognition 52 (2016) 287-305

Object labels tracks, train, cloud, sky, trees, snow, polar bear
Scene label SceneTrain, Transportation ScenePolarbear, WildLife, Arctic

Fig. 2. Examples of images and their annotation at object and scene levels.

Automatic annotation methods deal with visual features that can be extracted from the raw image data, such as colour, texture and
structure, and can automatically assign metadata in the form of keywords from a controlled vocabulary to an unlabelled image. The major
goal is to bridge the so-called semantic gap [12] between the available features and the keywords that could be useful to people. In the
paper [15] an image representation model is given to reflect the semantic levels of words used in image annotation.

This problem is challenging because different people will most likely annotate the same image with different words that reflect their
knowledge of the context of the image, their experience and cultural background. However, most people when searching for images use
two types of labels: object and scene labels. Object labels correspond to objects that can be recognised in an image, like sky, trees, tracks
and train for the image in Fig. 2a. Scene labels represent the context of the whole image, like SceneTrain or more general Transportation for
Fig. 2a. Scene labels can be either directly obtained as a result of the global classification of image features [23] or inferred from object
labels, as proposed in our approach.

Since object and scene labels are most commonly used, in this paper we focus on automatic image annotation at scene and object
levels.

We propose a two-tier annotation model for automatic image annotation, where the first tier corresponds to object annotation and the
second tier to scene-level annotation. An overview of the proposed model is given after the sections with the related work, in Section 3.
The first assumption is that there can be many objects in any image, but an image can be classified into one scene. The second assumption
is that there are typical objects of which scenes are composed. Since many object labels can be assigned to an image, the object-level
annotation was treated as a multi-label problem and appropriate multi-label classification methods RAKEL and ML-kNN were used. The
details of object level annotation are given in Section 4. The scene-level annotation relies on originally developed inference based
algorithm defined for fuzzy knowledge representation scheme based on Fuzzy Petri Net, KRFPNs. The KRFPNs scheme and data-driven
algorithms for knowledge acquisition about domain images are defined in Section 5. The inference approach for annotation refinement at
the object level is given in Section 6. The conclusions about scenes are drawn using inference-based algorithms on facts about image
domain and object labels obtained in the first tier, as detailed in Section 7. The major contributions of this paper can be summarised as
follows:

1. The adaptive two-tier annotation model in which each tier can be independently used and modified.

2. The first tier uses multi-label classification to suit the image annotation at object level.

3. The second tier uses inference-based algorithms to handle the recognition of scenes and higher-level concepts that do not have specific
low-level features.

4. The definition of the knowledge representation scheme based on Fuzzy Petri Nets, to represent knowledge about domain images that is
often incomplete, uncertain and ambiguous.

5. Novel data-driven algorithms for acquisition of fuzzy knowledge about relations between objects and about scenes.

6. Novel inference based algorithm for annotation refinement to reduce the error propagation through the hierarchical structure of
concepts during the inference of scenes.

7. Novel inference based algorithm for automatic scene recognition.

8. A comparison of inference based scene classification with an ordinary classification approach.

The performance of the proposed two-tier automatic annotation system was evaluated on outdoor images with regard to different
feature subsets (dominant colours, moments, GIST descriptors [23] and compared to the published results obtained on the same image
database as detailed in Section 8. The inference based scene classification is also compared with an ordinary classification approach and
has shown better performance. The paper ends with a conclusion and directions for future work, Section 8.
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Fig. 3. Framework of a two-tier automatic image annotation system.
2. Related work

Automatic image annotation (AIA) has been an active research topic in recent years due to its potential impact on image retrieval,
search, image interpretation and description. The AIA approaches proposed so far can be divided in various ways, e.g. according to the
theory they are most related to [9] or according to the semantic level of concepts that are used for annotation [30]. AIA approaches are
most closely related to statistical theory and machine learning or logical reasoning and artificial intelligence, while semantic levels can be
organised into flat or structured vocabularies.

Classical AIA approaches belonging to the field of machine learning look for mapping between image features and concepts at object or
scene levels. Classification and probabilistic modelling have been extensively used for this purpose. Methods based on classification, such
as the one described in [17], treat each of the semantic keywords or concepts as an independent class and assign each of them to one
classifier. Methods based on the translation model [10] and methods, which use latent semantic analysis [22] fall into the category of
probabilistic methods that aim to learn a relevance model to represent correlations between images and keywords. A recent survey of
research in this field can be found in [35,7].

Lately, graph-based methods have been intensively investigated to apply logical reasoning to images, and many graph-based image
analysis algorithms have proven to be successful. Conceptual graphs which encode the interpretation of the image are used for image
annotation. Pan et al. [24] have proposed a graph-based method for image annotation in which images, annotations and regions are
considered as three types of nodes of a mixed media graph. In [19], automatic image annotation is performed using two graph-based
learning processes. In the first graph, the nodes are images and the edges are relations between the images, and in the second graph the
nodes are words and the edges are relations between the words. In [8], the authors aim to illustrate each of the concepts from the
WordNet ontology with 500-1000 images in order to create public image ontology called ImageNet.

Within the project aceMedia, in [21] ontology is combined with fuzzy logic to generate concepts from the beach domain. In [1], the
same group of authors has used a combination of different classifiers for learning concepts and fuzzy spatial relationships.

In [13], a framework based on Fuzzy Petri Nets is proposed for image annotation at object level. In the fuzzy-knowledge base, nodes are
features and objects. Co-occurrence relations are defined between objects, and attribute relations are defined between objects and
features.

The idea of introducing a fuzzy knowledge representation scheme into image annotation system proposed in our previous research
[14,16], is further developed in this paper. New inference-based algorithms for scene classification and annotation refinement as well as
algorithms for data-driven knowledge acquisition are formally defined and enhanced. As opposed to the previous work where object level
classification was performed using classification of segmented images, object level annotation is treated here as a multi-label classification
problem on the whole image.

Binder et al. [3] have proposed a method called Output Kernel Multi-Task Learning (MTL) to improve ranking performance. Zhang et al.
[36] have defined a graph-based representation for loosely annotated images where each node is defined as a collection of discriminative
image patches annotated with object category labels. The edge linking two nodes models the co-occurrence relationship among different
objects in the same image.

3. Overview of the two-tier image annotation model

Images of outdoor scenes commonly contain one or more objects of interest, for instance person, boat, dog, bridge and different kinds of
background objects such as sky, grass, water, etc. However, people often think about these images as a whole, interpreting them as scenes,
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for example tennis match instead of person, court, racket, net, and ball. To make the image annotation more useful for organising and for the
retrieval of images, it should contain both object and scene labels. Object labels correspond to classes whose instances can be recognised
in an image. Scene labels are used to represent the context or semantics of the whole image, according to common sense and expert
knowledge. To deal with different levels of annotation with object and scene labels, a two-tier automatic image annotation model using a
multi-label classifier and a fuzzy-knowledge representation scheme is proposed. In the first tier, multi-label classification is proposed
since it can provide reliable recognition of specific objects without the need to include knowledge. However, higher-level concepts usually
do not correspond to specific low-level features, and inference based on knowledge about the domain is therefore more appropriate. The
relationships between objects in a scene can be easily identified and are generally unchanging, so they can be used to infer scenes and
more abstract concepts. Still, knowledge about objects and scenes is usually imprecise, somewhat ambiguous and incomplete. Therefore,
fuzzy-knowledge representation is used in the second tier. The architecture of the proposed system is depicted in Fig. 3. The input to the
system is an unlabelled image and the results of automatic annotation are object and scene labels. First, from each image, low-level
features are extracted which represent the geometric and photometric properties of the image. Each image is then represented by the m-
component feature vector X = (x1,X2, ...,Xm)' . The obtained features are used for object classification. The assumption is that more than
one object can be relevant for image annotation, so multi-label classification methods are used. The result of the image classification in the
first tier is object labels from the set C of all object labels. In the second tier, the object labels are used for scene-level classification. Scene-
level classification is supported by the image-domain knowledge base, where each scene is defined as a composition of typical object
classes. Other concepts at different levels of abstraction can be inferred using the defined hierarchical relations among concepts. Relations
among objects and scenes can also be used to check the consistency of object labels and to discard those that do not fit the likely context.
In this way, the propagation of errors is reduced through the hierarchical structure of concepts during the inference of scenes or more
abstract concepts.

To represent fuzzy knowledge about the domain of interest, a knowledge-representation scheme based on the Fuzzy Petri Net
formalism [26] is defined. The proposed scheme has the ability to cope with uncertain, imprecise, and fuzzy knowledge about concepts
and relations, and enables reasoning about them. The knowledge-representation scheme related to image domain and inference-based
algorithms for annotation refinement and for scene recognition are implemented as Java classes. The elements of the scheme are gen-
erated utilising the proposed data-driven algorithms for acquisition of fuzzy knowledge, which are implemented in Matlab.

4. Multi-label classification in the first tier

In the general case, an image can contain multiple objects in both the foreground and the background. All objects appearing on the
image, or many of them, can be useful or important for automatic image interpretation.

All objects appearing on the image are potentially useful and hold important information for automatic image interpretation. To
preserve as much information about the image as possible, many object labels are usually assigned to an image. Therefore, image
annotation at the object level is an inherently multi-label classification problem. Here we have used different feature sets with appropriate
multi-label classification methods.

4.1. Feature sets

The variety of perceptual and semantic information about objects in an outdoor image could be contained in global low-level features
such as dominant colour, spatial structure, colour histogram and texture. For classification in the first tier, we used a feature set made up of
dominant colours of the whole image (global dominant colours) and of parts of the image (region based dominant colours), colour moments
and the GIST descriptor. The used set of features is constructed to represent the varied aspects of image representation including colour and
structure information.

The dominant colours were selected from the colour histogram of the image. The colour histogram was calculated for each of the RGB
colour channels of the whole image. Next, histogram bins with the highest values for each channel were selected as dominant colours. After

Central and

Original image 3x1 grid background region

Fig. 4. Original images and the arrangement of a 3x1 image grid and central and background regions from which the dominant colours features were computed.
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experimenting with different number of different colours (3-36) per channel we chose to use 12 of them in each image as features (referred
to as DC) for our classification tasks.

The information about the colour layout of an image was preserved using 5 local RGB histograms, from which dominant colours were
extracted in the same manner as for the whole image. The local dominant colours are referred to as DC1 to DC5. To calculate the DC1, DC2
and DC3 local features, a histogram was computed for each cell of a 3x1 grid applied to each image. The DC4 feature was computed in the
central part of the image, presumably containing the main image object, and the DC5 feature in the surrounding part that would probably
contain the background, as shown in Fig. 4. The size of the central part was 1/4 of the diagonal size of the whole image, and of the same
proportions. There are 12 dominant colours with 3 channels giving a 36-dimensional feature vector of global DC. The size of local
dominant colours vector (DC1 to DC5) is 180 (12 dominant coloursx3 channelsx5 image parts). Additionally, we computed the colour
moments (CM) for each RGB channel: mean, standard deviation, skewness and kurtosis. The size of the CM feature vector is 12 (4 colour
moments for 3 channels).

The GIST image descriptor [23] that was proven to be efficient for scene recognition was also used as a region-based feature. It is a
structure-based image descriptor that refers to the dominant spatial structure of the image characterized by the properties of its
boundaries (e.g., the size, degree of openness, perspective) and its content (e.g., naturalness, roughness). The spatial properties are
estimated using the global features computed as a weighted combination of Gabor-like multi scale-oriented filters. In our case, we used
8 x 8 encoding samples in the GIST descriptor within 8 orientations per 8 scales of image components, so the GIST feature vector has 512
components.

We performed the classification tasks using all the extracted features (DC, DC1..DC5, CM, GIST). The size of the feature vector used for
classification was 740. Since the size of the feature vector is large in proportion to the number of images, we also tested the classification
performance using five subsets.

4.2. Image annotation at object level

We attempt to label images with both foreground and background object labels, assuming that they are all useful for image annotation.
Since an image may be associated with multiple object labels, the annotation at the object level in the first tier is treated as a multi-label
classification problem. Multi-label image classification can be formally expressed as ¢: E— P(C), where E is a set of image examples, P(C) is
a power set of the set of class labels C and there is at least one example e;cE that is mapped into two or more classes, i.e.
JejeE:|p(e)| > 2.

The methods most commonly used to tackle a multi-label classification problem can be divided into two different approaches [29]. In
the first, the multi-label classification problem is transformed into more single-label classification problems [20], known as the data
transformation approach. The aim is to transform the data so that any classification method designed for single-label classification can be
applied. However, data transformation approaches usually do not exploit the patterns of labels that naturally occur in multi-label setting.
For example, dolphin usually appears together with sea, while observing the labels cheetah and fish is much less common. On the other
hand, algorithm adaptation methods extend specific learning algorithms in order to handle multi-label data directly and can sometimes
utilise the inherent co-occurrence of labels. Another issue in multi-label classification is the fact that typically some labels occur more
rarely in the data and it may be difficult to train individual classifiers for those labels.

For the multi-label classification task, we used the Multi-label k-Nearest Neighbour (ML-KNN) [34], a lazy learning algorithm derived from the
traditional kNN algorithm, and RAKEL (RAndom k-labELsets) [28] which is an example of data adaptation methods. The kNN classifier is a
nonlinear and adaptive algorithm that is rather well suited for rarely occurring labels. The RAKEL algorithm considers a small random subset of
labels and uses a single-label classifier for the prediction of each element in the power set of this subset. In this way, the algorithm aims to take
into account label correlations using single-label classifiers. In our case, kNN classifier and the C4.5 classification tree are used as base single-label
classifiers for RAKEL. The base classifiers are applied to subtasks with a manageable number of labels. It was experimentally shown that for our
task the best results are obtained using RAKEL with the C4.5 as base classifier. We also used the Naive Bayes (NB) classifier along with data
transformation. The data were transformed so that each instance with multiple labels was replaced with elements of the binary relation p = E x C
between a set of samples E and a set of class labels C. An ordered pair (e, ¢) € E x C can be interpreted as “e is classified into ¢” and is often written
as epc. For example, if an image example e;5 € E was annotated with labels ¢(e;s) = {lion, sky, grass}, lion, sky, grass € E, it was transformed into
three single-label instances eqsplion, e15psky, e1spgrass. With NB, a model is learned for each label separately, and the result is the union of all
labels that are obtained as a result of a binary classification in one-vs.-all fashion and with RAKEL for small subsets of labels. Unlike the NB, with
RAKEL and ML-kNN a model is learned for small subsets of labels and therefore as a result of the classification only such subsets can be obtained.
In both cases, incorrect labels can also be assigned to an image along with correct ones if they are in the assigned subset for RAKEL and kNN case,
or if they are a result of binary misclassification for NB. For the one-vs.-all case, the inherent correlations among labels are not used, but an
annotation refinement post-processing step is proposed here that incorporates label correlations and excludes from results labels that do not
normally occur together with other labels in images.

The object labels and the corresponding confidence obtained as a result of the multi-label classification in the first tier of the image
annotation system are used as features for the recognition of scenes in the second tier.

In case when the Naive Bayes classifier is used, confidence of each object is set according to the posterior probability of that object
class. Otherwise, when classifier used in the first tier cannot provide information on the confidence of the classification, e.g. when the ML-
kNN classifier is used, the confidence value is set to 1. Object labels from the annotation set ¢(e) = C and the corresponding confidence
values make the set ®(e) C @(e) x [0, 1] that is input to the inference based algorithm for scene recognition in the second tier.

5. Knowledge representation in the second tier
The assumption is that there are typical objects of which scenes are composed, so each scene is treated as a composition of objects that

are selected as typical, based on the used training dataset. To enable making inferences about scenes, relations between objects and scenes
and relations between objects in an image are modelled and stored in a knowledge base. Facts about scenes and objects are collected
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automatically from the training dataset and organised in a knowledge representation scheme. It is a faster and more effective way of
collecting specific knowledge then manually building the knowledge base, since it is a broad, uncertain domain of knowledge and
expertise is not clearly defined. An expert only defines facts related to general knowledge like hierarchical relationships between concepts
so the need for manual definition of facts is reduced drastically. However, an expert can still review generated facts and modify them if
necessary. Due to the inductive nature of generating facts, the acquired knowledge is often incomplete and unreliable, so the ability to
draw conclusions about scenes from imprecise, vague knowledge becomes necessary. Additionally, the inference of an unknown scene
relies on facts about objects that are obtained as classification results in the first tier and that are subject to errors. Apart from using a
knowledge representation scheme that allows representation of fuzzy knowledge and can handle uncertain reasoning, the algorithm for
object annotation refinement is proposed to detect and discard those objects that do not fit the context and so to prevent error
propagation.

For the purpose of knowledge representation, a scheme based on KRFPN formalism [26], which is in turn based on the Fuzzy Petri Net,
is defined to represent knowledge about outdoor images as well as to support subsequent reasoning about scenes in the second tier of the
system. The definition of a fuzzy knowledge representation scheme adapted for automatic image annotation, named KRFPNs and the novel
data-driven algorithms for automatic acquisition of knowledge about object and scenes, and relations between them, are detailed below.

5.1. Definition of the KRFPNs scheme adapted for image annotation

The elements of the knowledge base used for the annotation of outdoor images, particularly fuzzy knowledge about scenes and
relationships among objects, are presented using the KRFPNs scheme.
The KRFPNs scheme concatenates elements of the Fuzzy Petri Net (FPN) with a semantic interpretation and is defined as:

KRFPNs = (FPN, &,p.D, 2). (1

FPN = (P,T,1,0,M, £2.f,c) is a Fuzzy Petri Net where

P={p;1,py,...Pn},neN is a finite set of places, T = {ty,t3,....tm},me N is a finite set of transitions, I : T—P(P)/g is the input function
and O : T—P(P)/o is the output function, where P(P) is the power set of places. The sets of places and transitions are disjunctive,
PN T=g, and the link between places and transitions is given with the input and output functions. Elements P,T,I, 0 are parts of an
ordinary Petri Net (PN).

M ={my,my,...,m;},r >0 is a set of tokens used to define the state of a PN in discrete steps. The state of the net in step w is defined
with distribution of tokens:Q,,: P— P(M), where P(M) is a power set of M. The initial distribution of tokens is denoted as €y and in our
case, in the initial distribution a place can have no or at most one token, so |£2(p)| € {0, 1}. A place p is marked in step w if 2,(p) # @.
Marked places are important for the firing of transitions and the execution of the net. Firing of the transitions changes the distribution of
tokens and causes the change of the net state.

Fuzziness in the scheme is implemented with functions ¢ : M—[0,1] and f : T—[0, 1] that associate tokens and transitions with truth
values in the range [0, 1], where zero means “not true” and one “always true”.

Semantic interpretation of places and transitions is implemented in the scheme with functions & and ﬂ in order to link elements of the scheme
with concepts related to image annotation. The function &: P—D x [0, 1], maps a place p; e P to a concept and the corresponding confidence
value(d;, c(d;)) : dj e D, c(d;) = max c(m;), m; € (p;). If there are no tokens in the place, the token value is zero. An alternative function that
differs in the codomain is defined, a: P— D. The function a, is a bijective function, so its inverse existso~': D— P. Those functions are useful for
mapping a place p; € P in the scheme to a concept d; and vice versa, when no information about the confidence of a concept is needed.

The set of concepts D contains object and scene labels used for annotation of outdoor images,D = C U SC. A set C contains object labels
such as, {Airplane, Train, Shuttle, Ground, Cloud, Sky, Coral, Dolphin, Bird, Lion, Mountain}  C and set SC contains scene labels on different is
SC = {SceneAirplane, SceneBear, .., Seaside, Space, Undersea}.

The function ﬂ T—ZX x [0,1]c D x D x [0, 1],maps a transition t; e Tto a pair (dyoidp, ¢j):0i € Z, dpy, dp € D, o0~ 1(dpy) = pr. @~ 1(dp) = p
,prel(tj).p e 0(tj), c;=f(t;) where the first element is the relation between concepts linked with input and output places of the tran-
sition t; and the second is its confidence value. The function f: T — X that differs in the codomain is also defined and is useful for checking
whether there is an association between a transition and a relation.

The set X contains relations and is defined as X = occurs_ with,is_part_of,is_a. The relation o1 = occurs_with is a pseudo-spatial
relation that is defined between objects and it models the joint occurrence of objects in images. The compositional relation o, = is_part_of
is defined between scenes and objects, reflecting the assumption that objects are parts of a scene. The hierarchical relation o3 =is_a is
defined between scenes to model a taxonomic hierarchy between scenes. The confidence values of o1 = occurs_with and o, = is_part_of
relations are defined according to the used training dataset, and in case of o5 =is_a it is defined by an expert.

5.2. Data-driven knowledge acquisition and automatic definition of KRFPNs scheme

The process of knowledge acquisition related to annotation refinement and scene recognition is supported with algorithms that enable
automatic extraction of knowledge from existing data in the training set and arrangement of acquired knowledge in the knowledge
representation scheme. Automated knowledge acquisition is a fast and economic way of collecting knowledge about the domain and can
be used to estimate the confidence values of acquired facts especially when the domain knowledge is by nature broad as is the case with
the image annotation. In that case experts are not able to provide a comprehensive overview of possible relationships between objects in
different scenes or objectively evaluate their reliability. Automatically accumulated knowledge is very dependent on the examples in the
data set, and to make it more general the estimated confidences of facts are further adjusted. In addition, to improve the knowledge base
consistency, completeness and accuracy, and to enhance the inference process, an expert can review or modify the existing facts and rules
or add new ones.
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Fig. 5. Elements of KRFPN scheme related to relation oy = occurs_with and the annotation set g(e) = {water, fish, coral}.

5.2.1. Automatic definition of KRFPNs scheme elements used for annotation refinement

To check whether the objects obtained as a result of classification are consistent, the occurs_with relation that is defined between
objects that can appear together on the same scene is used. This validation step is important to prevent further error propagation in the
second tier, since reasoning about scenes is based on the objects present in the image.

To automatically generate the occurs_with relation between objects, as well as the corresponding confidence values, a data-driven
algorithm is proposed (Algorithm 1). The input to the Algorithm 1 is the training set I'= {¢(e): e e E} containing annotations of images at
the object level. The steps of the algorithm for definition of elements of the KRFPNs scheme related to the occurs_with relation are as
follows:

Algorithm 1. Definition of elements of the KRFPNs scheme related to the occurs_with relation.
Input:
The training set containing annotations of images I'= {¢(e): e E} at the object level.
Steps:
1. Define the set C = {d;:3e eE,d; e ¢(e),p: E—>P(C).
2. vd; e C c D pick a place p; € P and set o(p;) =d;, a: P—D.
e Note 1: « is a bijective function, so o~ '(dg) = pgo~': D>P
e Note 2: place p; e P is not marked, so & (p;) = (d;,0),&: P-D x [0,1]
3. Let the relation o1 = occurs_with € 2 be defined as
01={(da,dp):dg,d, e C,a#b,JecE :{dq,dp} = (e);p: E-P(C)}.
4, V(da,db) €01,01 € 2do:
4.1 compute ¢; = P(dydq) =

P(dg N dy) ~ Sdady +11Vea
P(d,) = faq +m

Vg,is prior estimate of P(dyd,) that is experimentally set to vy, =, m is the weight that says how confident we are of our prior
estimate vy, .
4.2 define tjeT :fi(tj) = (dﬂo'ldb,cj),[;': T—-X x[0,1].
e Note 3: it holds §(t;) = dqo1dp, since f: T>X
4.3 set the transition value f(t;) =c;,f : T—[0,1].
4.4 set the input function I(t;) = @~ '(dg) = p,.1 : T>P(P)\ @.
4.5 set the output function O(t;)) =a~1(dp) =p,, 0 : T>PP) \ @.
Output:
Elements C,P,T,I,O,f, &, /;’of the KRFPNs scheme related to the o1 = occurs_with relation.

,a#b,ce[0,1].

The process of defining the elements of the KRFPNs scheme related to the occurs_with relation by means of the Algorithm 1 is
illustrated using an example annotation set @(e). Let ¢(e) = {water, fish, coral} be the annotation set containing object labels of an
example image e from the set E. The training set I" of all annotations @(e) is first used to determine the set C=
Airplane, Bird, Cloud, ..., Shuttle, Sky, Train of object labels used to annotate images in the first tier of the automatic image annotation
system.

Each element d; e C, is mapped to a place p; in the KRFPNs scheme. For instance, let d;=corale C be mapped to the place p-,
o~ 1(coral) = p,.

In the step 3, the relation o7 = occurs_with is defined between pairs of concepts that appear together at least once among all annotation
sets for the images in E. For the annotation set ¢(e)=water,fish,coral in this example, the relation o is defined as o1ye) =
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Fig. 9. Example of an unlabelled (raw) image.

Ty (P7.{1.0})

n14(p20, (0.1})T

1 (p26.009)); ~
T3 (PE1.{0.3}) ¢

Fig. 10. Inheritance tree obtained with Algorithm 3 for the class “coral”, with leaf nodes corresponding to objects in the set D.

{(water, fish), (fish, water), (water, coral), (coral, water), (fish, coral), (coral, fish)}. For each pair from oy, the corresponding transition,
transition value, input and output functions are defined in step 4. For instance, for the pair (coral, water) the corresponding places are
found, a~1(coral) = p;, a~(water)=p,s and the transition t3g; is defined, so that p; is the input place and p,g is the output place,
I(t397) = Pp7, O(t397) = P2s-

The confidence in a relationship o1 = occurs_with between objects in C is expressed by a transition value. The transition value f(t3g7) is
set to the conditional probability of occurrence of the label water in all annotation sets, given that the label coral has occurred. It is
estimated using the ratio of empirical relative frequencies of mutual occurrence of both objects coral and water and occurrence of object
coral, among all annotation sets for images from the set E. In cases when there are very few or no examples of mutual occurrence of objects
in the training annotation sets, an m - estimate of probabilities is implemented [11]. The m-estimate is used to fix the problem of zero
posterior probability and to generalise the empirical relative frequencies beyond the used training set. The idea behind it is to pretend that
we have a virtual set of an extra m training examples of objectd,, where vy, of them co-occur with object dj.

The transitions and places of the KRFPNs scheme can be presented by a directed bipartite graph G = (P, T,A) whose vertices are divided
into two disjoint sets P and T, such that every directed edge in A connects a vertex in P with one in T. The vertices p; e P are graphically
represented by circles and the vertices tj e T by bars. The set A is a set of directed edges that contains ordered pairs of vertices (I(t), t), t
e T,I(t) = P considered to be directed from p to t and ordered pairs of vertices (t, O(t)),t € T, O(t) = P considered to be directed from ¢ to p.
An example of graphical representation of elements of KRFPN scheme related to relation o7 = occurs_with and the annotation set ¢(e) =
water, fish, coral is shown in the Fig. 5.

The confidence of a concept d; can also be shown on the graph by a value of a token c(m;) when that token is within the place mapped
to that particular concept. Initially marked places correspond to concepts that are results of classification in the first tier. The token values
of each of those places can be set to the confidence of classification in the first tier to reflect the degree of uncertainty that the result of
classification is that particular concept. A token is presented with a black dot within a place.

5.2.2. Automatic definition of elements of KRFPNs scheme related to scene recognition

Recognition of scenes in the second tier of the annotation system is realised on the assumption that a scene is a composition of several
objects that can appear together on the same image. Between objects belonging to the same image and the scene the is_part_of relation is
defined. The common occurrence of objects in the scenes, as well as the corresponding confidence values are determined automatically
from the training set by analysing the annotation sets comprising both object and scene labels. The objects that are the most repre-
sentative and discriminative for the given scene should have more impact on scene recognition, so the confidence of is_part_of relation is
computed according to the weighted Bayes rule.

The steps of the data-driven Algorithm 2 for definition of elements of the KRFPN scheme related to the is_part_of relation are as
follows:

Algorithm 2. Definition of elements of the KRFPN scheme related to is_part_of relation.
Input:
The training set containing annotations of images I'" = {¢@(e) U ¢"(e): e E} at the object and scene level.
Steps:
1. Define the set SC=d;:3ecE, d;j e ¢"(e), ¢": E~P(SC) of scene labels.
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2. vd; € SCc D define a(pg;) =d;, o: P—D.
e Note 1: a is a bijective function, so «~1(d;) = pg;, 0= ': D—P
e Note 2: place p; e P is not marked, so & (py;) = (d;,0),&: P-D x [0,1]
3. Let the relation o, =is_part_of € £ be defined as
02 ={(da,dp):da e C,dp € SC,Je € E :{dq,dp } = p(e) U @ (e);: E—P(C), ¢": E5P(SC)}, and is said that dqis_part_ofdp.
4, V(dg,dp) € 65,0, € 2do:
4.1 compute set ¢; = wy, P(dy(dq) = wy, X790 ~ wdafdafd:ﬂ:ﬁv%, dq € C,dy € SC,cj€[0,1]

Zfdx+]

where wy, =log % 1 is a virtual set of samples chosen experimentally, and vy, is the estimated probability that a
sample in a virtual set is the object d,.
4.2 definet; e T :B(tj) = (daaldb,cj),/}’: T-X x[0,1].
e Note 3: it holds f(t;) = dqo,dp, since f:T - X
4.3 set the transition value f(t;) =cj,f : T—[0,1].
4.4 set the input function I(t;) = a~1(ds) =pg, 1 : T->PP)\ @.
4.5 set the output function O(t;) = o~ 1(dy) =, 0 : T>P(P) \ @.

Output:
Elements SC,P,T,I,O,f, &, f} of the KRFPNs scheme related to is_part_of relation

The is_part_of relation between scenes and objects is used to define scenes as compositions of objects. The definition of elements of the
KRFPN scheme related to is_part_ofrelation is illustrated using an example. The objects are already associated with places in the scheme in
Algorithm 1. Upon the same principle, using the function o~ 'the places are assigned to scenes. For instance, d; = SceneFish will be mapped to
the place pg;, o~ !(SceneFish) = pg;.

To define the is_part_of relation, the annotation sets of images in E that contain both scenes and object labels are used. If scene and object
labels appear together in an image annotation set, it is assumed that objects are part of that scene and that is_part_of relation exists between
them. Let ¢(e) U ¢"(e) = {water, fish, coral} U {SceneFish} c C U SC be the annotation set of an example image e comprising object and scene
labels. Therefore, the relation o, =is_part_of for this annotation set ¢(e) U ¢”(e) is defined as 62 yeyup'e = {(water,SceneFish),
(fish, SceneFish), (coral,Scene Fish)}. In step 4, the transitions, transition values, input and output functions are defined for each pair from
02) p(e)ugr(e)- FOr example, the places corresponding to the pair (coral, SceneFish), are o~ (coral) = p; and o~ ! (SceneFish) = pg; and the transition
tyy, is defined so that p; is the input place, and pg; is the output place, I(t222) = {p7}, O(t222) = {Pe1}-

Confidence in a relationship o, = is_part_of between scenes and objects is expressed by a transition value. The transition value f(ty;;) is
computed according to the weighted Bayes rule of occurrence of the scene SceneFish in all annotation sets, given that the object coral has occurred.
It is estimated using the ratio of empirical relative frequencies of mutual occurrence of both scene SceneFish and object coral and occurrence of
object coral, among all annotation sets for images from the set E. To generalise the empirical relative frequencies beyond used training set,
particularly in cases when there are very few or no examples of mutual occurrence of objects in the training annotation sets, an m - estimate of
probabilities is implemented [11] similarly as in Algorithm 1. In addition, the weight computed using the logarithm of the inverse object fre-
quencies is used to increase the influence of those objects that are discriminant for a particular scene and are parts of a small number of scenes.

In Fig. 6. a part of the KRFPN scheme is presented, showing the is_part_of relations between the scene SceneFish and its components.
The part representing the relation 63, 4e)ue e defined by the former procedure is highlighted with a dashed line.

Additionally, after the prototype of the knowledge base is automatically built, the expert can be involved to add to the models of
domain knowledge at varying levels of generality by defining new relations and rules in the knowledge base. In the KRFPNs scheme, the
o3 =is_a relation defined between scenes and their generalisations, expands the set of scenes SC with more abstract scene classes.
Formally, the relation o3 =is_a e X is defined as o3 = {(da, dp):dq.dp € SC,:3d,— 3d,, } and is said thatdyisageneralizationof d,. Elements of
the relation o3 =is_a are defined by the expert. For example, at the top level of the hierarchy are classes OutdoorScene, NaturalScene.
Between classes in a hierarchy is_a relation is defined, e.g. WildCatsScene is_a WildLifeScene.

Generalisations of scenes are not the only concepts that can be added to the KRFPNs scheme; any other concept can also be added to
the scheme by an expert and linked to existing concepts with the corresponding relations. For example, in Fig. 7a generic scheme is
expanded with is_synonym relation between synonyms and is_translation relation to name the concept in a different language. Also, is_a
relation between scenes at different levels of abstraction is shown.

6. Inference based annotation refinement

Image annotation at object level should be as precise as possible to avoid error propagation through the hierarchical structure of
concepts, where a misclassified object in the first tier leads to a wrong conclusion about the whole scene in the second tier. In addition to
improving the performance of classification itself, the classification results can be improved in a post-processing annotation refinement
step. A group of authors has examined several different approaches for annotation refinement: Markov chains in [33], ontology in [18],
conditional random fields (CRF) in [32], normalised Google distance (NGD) in [6], and re-ranking the annotations using the random walk
with restarts algorithm in [31].

We propose an inference-based annotation refinement algorithm to automatically detect and discard misclassified object labels
obtained with multi-label classification in the first tier. Annotation refinement is based on the consistency checking of object labels that
relies on the execution of the Petri nets. The execution of the Petri net occurs in discrete steps. For each step a new token distribution and
token values are defined. During the execution, the enabled transitions are fired, causing the change of the number and of the distribution
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Table 1
Statistics of original and simplified datasets.

Statistic Original data Simplified data
Objects Scenes Objects Scenes

No. of labels 54 20 22 12
Max images per label 248 81 220 77
Min images per label 1 1 9 15
Mean images per label 26 25.2 50 32
Median images per label 7.5 19 28 255
Std. dev. per label 50 22 56 21

of tokens. A transition t; i Qu(p;)| =1, Vp; eI(t;),where Q, is
distribution of tokens in step w. After firing the transition ¢;, the new number of tokens in the place p; € I(t;) U O(t;), in the step w+1 is
given by: |Qy, 1 1(p)] = [Qw(Py| — I1(tj) N p;I+10(t;) N p;l. Firing a transition is in accordance with the basic firing rules of the original PN
[25]. After the transition firing, a new token value c(my, 1) at the output place is obtained as c(m)f (t;).

A generic example of the FPN scheme, depicting the state of the FPN before and after firing enabled transitions, is shown in Fig. 8. In the
example, both of the transitions ¢4, t, have one input and one output place; the input place of the transitiont, is I(t,) = p; and the output
place is O(t,) = p. By firing the transitions t, and t;, the token m; is removed from the input place and the new tokens m, and mjs are
generated in output places with new token values.

The execution of the FPN is closely related to the inference process using fuzzy knowledge stored in the knowledge base. Inference process can be
graphically presented by an inference tree related to inheritance and recognition trees [26] and derived from the reachability tree of the Petri net [5,25. The
nodes in the each level of the inference tree represent the marked places of the net in each state. The nodes of the inference trees have the
formm (pj, c(m,))j =1,2,...,p,1=1,2,..,r,0 <1 < |[M|, where the first component specifies the place p; where the token m; is located and the second
one its value, c(my). The arcs that link the nodes correspond to the fired transitions. The inference tree corresponding to the generic example of FPN scheme in
Fig. 7a and b is shown in Fig. 7c. The level k=0 contains the root node containing the input place of the transitions t, and t,and corresponds to the state of the
net shown in Fig. 8a. The leaf nodes in the level k=1 correspond to the output places of transitions t, and t;, that are marked in the state shown in Fig. 8b.

The inference tree is built in the breadth-first manner, so that for the initial token distribution Qg all enabled transitions are fired and
then new directly reachable token distributions are generated. The inference tree is generated until there are no more unprocessed nodes
(frontier nodes) or can be manually limited to a predefined level k. During the execution of algorithm, all nodes are classified as frontier,
frozen (F), terminal (T), duplicate (D) or internal. A duplicate node is a node that has already appeared in the lower level of the tree, a
terminal node is a node for which there are no enabled transitions and an internal node is a processed node that is neither duplicate, frozen
nor terminal. A node is frozen if it is an output node of a transition associated with the spatial relations in order to stop further firing of the
transitions where the hierarchical structure ends. Here, the output places of the transitions that represent the occurs_with relation are frozen.
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Table 2
Evaluation results for object annotation level in the first tier.

Feature subset Classification method Label-based results for object-level annotation Instance-based results for object-level annotation
Precision Recall F1 score Precision Recall F1 score
All RAKEL-C4.5 0.39 0.28 0.30 0.61 0.54 0.54
RAKEL-KNN 0.49 0.41 0.40 0.57 0.53 0.53
ML-KNN 0.32 0.2 0.23 0.66 0.42 0.48
NB 0.38 0.64 0.46 0.22 0.34 0.25
GIST RAKEL-C4.5 0.35 0.26 0.27 0.58 0.50 0.50
RAKEL-KNN 0.48 0.45 0.43 0.57 0.55 0.54
ML-kNN 0.26 0.17 0.19 0.60 0.38 0.44
NB 0.31 0.65 0.40 0.21 0.38 0.26
DC+CM RAKEL-C4.5 0.40 0.27 0.29 0.60 0.50 0.52
RAKEL-KNN 0.31 0.32 0.29 0.50 0.48 047
ML-kNN 0.16 0.10 0.11 0.63 0.34 0.41
NB 0.28 0.65 0.36 0.22 0.44 0.27
DC1.DC5 + CM RAKEL-C4.5 0.37 0.27 0.29 0.61 0.53 0.54
RAKEL-KNN 0.37 0.31 0.30 0.51 0.46 047
ML-kNN 0.19 0.11 0.12 0.63 0.33 0.41
NB 0.32 0.67 0.41 0.22 0.39 0.26
DC+ DC1.DC5 + CM  RAKEL-C4.5 0.39 0.27 0.30 0.59 0.52 0.52
RAKEL-KNN 0.39 0.33 0.31 0.51 0.46 0.47
ML-KNN 0.20 0.11 0.12 0.64 0.34 041
NB 0.31 0.66 0.41 0.22 04 0.26

The occurs_with relation is used for annotation refinement to check if the object labels from the annotation set ¢(e) in the first tier are
mutually consistent. The labels that cannot appear together with other labels in the set ¢(e) are considered intruders and are discarded.
The occurs_with relation and facts about objects are included in the KRFPNs scheme with the Algorithm 1.

Object labels from the annotation set @(e) = C c D and the corresponding confidence values make the set ®d(e) c ¢(e) x [0, 1]. The
confidence values are provided either by the classifier used in the first tier of the image annotation system or are set to 1 if the used
classifier doesn’t give this information. Set ®(e) is input to the inference based algorithm for annotation refinement. The steps of the
proposed inference based algorithm for annotation refinement are:

Algorithm 3. Inference based algorithm for annotation refinement.

Input:
The set ®(e) = {(d;,vi),i=1,2,...} Cp(e) x [0,1]c D x [0, 1].
Threshold value € of relation o1 = occurs_with (default value ¢ =0.05).
Intruder threshold value 6 =1(|®p|—1).
Elements of the KRFPNs scheme.

Steps:
1. Define totally ordered set (®,y); where relation y

v = {((da, Va), (dp, Vp)):(da, Va), (dp, V) € D x D,vg <V}

2. Let @' = .
3. For each element (d;, v;) € (P, y) do:

3.1. Form the root node 7 in the form 7}, (pj,cj):pj =a~1(d),¢=1.
3.1.1. p; is marked place. Qo(p;) = mo,€20(p)) = @,1 # j, c(mg) =¢;

3.2. Let the list L of objects occurring with d; be L = .

3.3. Fire all enabled transitions t;: I(t) =p;,0 <l < IC

,B(t)) € o1, where p; is the first component of the node . Q(pj> =@.
3.4. For all output places of transitionst; form step 3.3, p, = O(t)), create new nodes x (pq, cq)> :¢g =¢if (t), pq = O(t;) and link

them by directed arcs with node zi,. The arc value is set to transition value, f(t)). Q(pq) # @. All new nodes are frozen nodes (F).
3.5. For each frozen node xy (pq,cq)):

3.5.1. Insert oc(pq) toLifcg>e.

3.6. Examine the intersection A=L N ¢',¢' = ®|;:
3.6.1. If |A| <6, @' =@\ (d;, c(dy))
3.6.2. If A = ¢’ \ d;, continue from step 4.
Output:
The set @’(e) containing elements of ®'(e) that have passed the consistency check,
The set ¢'(e) = D'|p(e) containing object labels that have passed the consistency check.

For instance, let the unlabelled image e in Fig. 9, represented with a feature vector x, be given for automatic annotation. The multi-label
classifiers generate a set of object classes C; e C for a given feature vector X, as explained in Section 3.2. For this example, the obtained classification
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annofation refinement coral, fish, flower airplane, cloud, dolphin, sky
Object labels after annotation coral, fish airplane, cloud, sky

refinement

Fig. 14. A positive (a) and negative and (b) example of inconsistency checking of object labels in an annotation refinement procedure.

Table 3
Label-based evaluation measure using the proposed two-tier image annotation system and NB for image annotation at the scene level.

Annotation method Feature Label-based evaluation measure for scene-level annotation
subset
Precision Recall F1 score
Second tier of image Object labels 0.68 0.59 0.63
annotation system
NB All 0.40 0.69 0.5
GIST 0.28 0.68 0.39
DC+CM 0.22 0.64 0.32
DC1.DC5 + 0.28 0.68 0.39
M
DC+ DC1.. 0.27 0.66 0.37
DC5 + CM

Image example:

First tier elephant, trees, ground airplane, sky, grass water. dolphin water, trees, sky, cloud
SceneElephant, Scenedirplane, SceneDolphin,
) ) Seaside,
Second tier Wild Life Scene, Natural Vehicle Scene, Sea Scene,

Natural Scene
Scene Man Made Object Natural Scene

Fig. 15. Examples of two-tier image annotation.

result in the first tier of the automatic image annotation system is ®(e) = {(sky, 0.8), (airplane, 0.6), (tree, 0.7), (coral,0.2) }. Note that the label
coral is a result of misclassification because it is not present in the image.

The initial refined annotation set is identical to the set ®(e). During the execution of the algorithm, the detected intruders will be
removed.

It is assumed that the object with the highest confidence corresponds to the context, so the object label that has the lowest truth value,
in this case (coral, 0.2), is analysed first in order to verify whether there is a occurs_with relationship defined between that object class and
other object classes in ®(e). The root node 7} (p;, 1)of the inheritance tree is formed using the function a~! to find the corresponding
place, a~!(coral)=p, and the confidence value is set to 1. The place p, is marked, so the initial token distribution is is
Qo(p7) = mo, Qo(p;) = 2,1 7. The list of objects L occurring with coral is initially empty.

Then, the inference tree is formed by running the steps 3.3-3.4. The resulting inheritance tree for coral is shown in Fig. 10.

After the inference tree is formed, the set L contains all objects in terminal and frozen nodes for which coral has the occurs_with relation
defined with confidence value greater than e = 0.05, L = water, fish, sky. To determine if coral is consistent with other objects from the set ®d(e),
i.e. @ p/coral, the intersection A is examined. In this case, the intersection is A =L N @' p = water, fish, sky N {sky, airplane, trees} = sky. There
is only one element in A, less than the threshold value 6 = 1.5, so it is conclude that the object coral does not belong to the context and is
considered an intruder and removed from the extended annotation set @'(e). The most reliable case for declaring an object intruder is in the
case when the intersection A is empty, meaning that the object d; cannot appear together with any other object from ®’(e).

The steps 3.1-3.6 are repeated for the rest of the elements in the set (®, y). For example, the inheritance tree for sky is shown in Fig. 11.
The corresponding intersection is A =L n ®'\p =airplane, lion, ..., watern {airplane, trees} = airplane, trees, so it concluded that sky is
consistent with other objects in ®@’. The more elements are in the intersection A, the greater is the reliability that the object d; fits the
context of the image.
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Since the intersection A is equal to @',p/sky, the consistency checking for the remaining objects in @' is not necessary and the
algorithm stops. The final refined annotation set is thus ®'(e) = {(sky,0.8), (airplane, 0.6), (tree,0.7)}.

7. Inference based scene classification

The procedure of further image annotation for the image e in the second tier uses the refined annotation set @’(e) as feature for scene
recognition. Unlike the specific objects that can be well characterized with global and regional low-level features, it is very difficult to
recognise higher-level concepts that do not have specific low-level features using ordinary classification algorithms. These kinds of
concepts can be effectively represented by the defined fuzzy-knowledge scheme KRFPNs capable of handling imprecise information about
the domain and the relationships between objects and scenes.

For the task of scene classification of a new, unknown image, an inference based algorithm for scene classification is defined. The
algorithm uses the set ®' containing object labels that have passed the consistency check and the corresponding confidence values
as input.

The steps of the inference based algorithm for scene classification are:

Algorithm 4. Inference based algorithm for scene classification.
Input:
The set ®'(e) = D'(d;,v)) c ¢'(e) x [0,11c D x [0,1],i=1,2, ...
Depth of search k.
Elements of the KRFPN scheme
Steps:
1. LetZ=(Zy,Z,,...,Z;5c;) = 0145, be the vector of scene recognition scores.
2. For each element (d;, v;) € ®'(e) do:
2.1. Form the root node 7} in the form 7z, (pj,cj):pj =a~1(dj, ¢ =v;.
2.1.1. p; is marked place Qo(p;) = mo, Qo(p) = @,1 #j, c(mg) =¢;
2.1.2. Let 2 =(Z},2), ..., Zlg ) = O1is¢)
2.1.3. Let the list of frontier nodes F = (}))
2.2. Let my (pp, cp) =7 (pj, cj>.
2.3. Examine the node 7y:
2.3.1. If there are no enabled transitions for the place p, of the node 7y, 7, is a terminal node (T); continue from step 2.8.
2.3.2. If &y lies at the k-th level of the recognition tree, 7y is a k-terminal node (k-T); continue from step 2.8.

233.1If (x(pp> € SC, where p,, is the first component of the node 7y, then zﬁ,::max(zi ,Cp) , where ¢, is the second component of

TTx.
2.4. Remove 7, from F.

2.5. Fire all enabled transitions t; : I(;) = p,,0 <1< |SC|, f(t;))¢ 61, where p,, is the first component of the node . Q(pp> =Q@.
2.6. For all output places of transitionst; form step 2.5, p, = O(t)), create new nodes my (pq, cq)) :¢qg = ¢pf (1), pg = O(ty) and link them

by directed arcs with node z,. The arc value is set to transition value, f(t)). Q(pq) #*D.

2.7. Add the new nodes to the list of frontier nodes F.
2.8. If the list F is not empty, pick the first element in F as the node 7,; continue from step 2.3.
29.Z2=2+7

3. Define the set I* = {i,ﬁ i =arg ]maxlsaz,-},] <h<|SC|
i=1, ..,

4. Define the set ¢”(e) = {a(p,»;) } The elements of the set ¢” are scenes from SC that best match the given set @'(e).

Output:
The set @”(e) containing the concepts from SC c D that best match the elements from the set @'(e).

The procedure will be illustrated using an example image e depicted in Fig. 8. The object classes with the corresponding confidence
values obtained by object classification and after inconsistency checking in the first tier are contained in the set ®'(e)={(sky, 0.8), (tree,
0.7), (airplane, 0.6)}. The goal is to find the most likely scene for the given set ®’(e). A vector Z is formed to represent the recognition score
of each scene for the given set @’'(e), so that each of its components corresponds to a scene from SC. At the beginning, the vector Z is
initialised to zero. In each iteration of the Algorithm 4 inference trees are formed for each object in ®'(e). The values of Z are increased in
each iteration by scene recognition scores considering only the current object from ®’(e). At the end of the algorithm, the components of
the vector Z contain the scene recognition scores for each scene in the whole set ®’(e), with the highest scores representing the most
likely scenes. In the first iteration in this example, the root node for (sky, 0.8) e ®(e) is formed by first determining the corresponding place
of the object sky using the function a~': a~1(sky)=pso. The place p,o is marked, so the initial token distribution is
Qo(P20) = Mo, Qo(p;) = @,1 # 20, and the corresponding token value is c(mg) = 0.8. The formed root node is thus m} (p,, 0.8) and the initial
list of frontier nodes F is F=(m} (p,g,0.8)). The vector z' of scene recognition scores considering the object sky is initialised to zero.

The root node is also the first frontier node and is thus examined first. The node has enabled transitions and is below the limited depth of
search k, so it is neither terminal nor k-terminal. The concept a(p,o) = sky is not the element of the set of scenes SC, so it does not contribute to
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the values of z'. All enabled transitions from the place p,, of the current node are fired, and new nodes n}(p32, 0.296), ﬂ%(ng, 0.568), ..., ﬂ}o
(p40, 0.048), 7}, (p31, 0.056) connected with arcs to the current node are created. The places of the new nodes are the output places of transitions
whose input place is p,,. The node values are calculated as the product of the parent node value and the value of transition of that node, e.g. for
the node 73(p40, 0.048) the value is obtained as ¢,f(ts7) = 0.8 * 0.06 = 0.048. This point of the algorithm corresponds to the root (k=0) and first
level (k=1) of the recognition tree shown in Fig. 12. a). The newly created nodes are inserted while the current node is removed from the list of
frontier nodes F. By repeating the steps 2.3-2.8 of the Algorithm 4 until there are no more frontier nodes in list F, the inference tree for the current
element (sky, 0.8) € ®(e) is constructed, Fig. 12. a). For each node of the inference tree that has a place that belongs to the set of scenes SC, the
component of the vector z! corresponding to the same scene is increased by that node value. However, if more nodes have the same place, only
the maximum node value is retained in z'. For the object sky, the components of the resulting vector z'are z} =0, z} =0, ..., z}; =0.568, z};
=0184,..., z},=max(0.104, 0.48)=048,..., z}, =0.568, .... The values of the vector z!are then added to the vector Z. The step 2 is repeated for the
remaining elements of ®(e), (tree, 0.7) and (airplane, 0.6), starting from the root nodes mo',i= 1, ..., 3,yielding trees shown in Fig. 12b) and c). The
values of zi are accumulated into Z, so the obtained vector Z represents the ranking of scene classes according to the scores obtained by the
algorithm for scene classification. The components of the vector Z with the highest values, determined in the step 3, correspond to the most likely
scenes for the image e.

If there are several components of the vector Z with the same maximum value, more than one scene class can be assigned to the image.
In this example, the components Z,9,Z5, and Zs4 of the vector Z have the same maximum value 1.292, so scene classes a(p29) = Sce-
neAirplane, a(p52) = VehicleScene and a(54) = TransportScene are chosen as the best match. The annotation set ¢’ (e) for the image e at the
second tier is thus ¢’ (e) = SceneAirplane , VehicleScene, TransportScene.

By merging the labels that are so far associated with the image, a two-tiered annotation of the image is formed. The scene recognition
scores in Z, obtained with the proposed inference algorithm, have a different range than the confidence values of object classes in ®(e), so
the final annotation set is formed by joining only labels from the first and second tier. For example, for the image e (Fig. 8), the annotation
set is @”'(e) = @'(e) U ¢"(e) = {sky, airplane, tree} U SceneAirplane, VehicleScene, TransportScene.

More abstract concepts can be inferred using the hierarchical relationships among the scene concepts. The number of hierarchical
levels can be changed, and, if necessary, a new KRFPNs 2 scheme with more abstract concepts can be defined and connected with the
KRFPNs scheme we already use, Fig. 13. To enable uninterrupted inference through a hierarchical structure of schemes, the output nodes of
the lower scheme should correspond to the input nodes of the scheme at the higher level of abstraction.

8. Evaluation of the proposed two-tier model

We compared the results of the proposed two-tier automatic image annotation system at object and scene levels with previously
published results.

The performance of the annotation in the first tier refers to multi-label classification at object level and is evaluated using different
subsets of features. The obtained object labels are refined using the proposed annotation refinement algorithm, and the impact of that
process is analysed at the scene level where the objects are treated as features for scene inference. The performance of the inference-based
scene annotation in the second tier is also compared with scene classification with the ordinary classification approach using the Naive
Bayes classifier with the same sets of features that were used in the first tier for object classification. The achieved results are averaged
over 3 runs, since 3-fold cross validation was used. The classification performance at the object level was measured in terms of instance-
based and label-based accuracy, precision, recall and F1 score [29], while the classification performance at the scene level was measured
using the label-based precision and recall metrics.

8.1. Evaluation measures

The instance-based evaluation measures are based on the average differences of the actual and the predicted sets of labels over all
examples in the test dataset. The label-based evaluation measures assess the predictive performance for each label separately and then
average the performance over all labels [29]. These measures are used since an image may not only be correctly or incorrectly annotated,
but also partially correctly annotated in the case of multi-label classification. For example, if an image should be annotated with the object
labels grass, sky, wolf, and is automatically annotated with tree, sky, dog, cloud, then the evaluation measure should reflect the insertion of
wrong labels (tree, dog, cloud), missing labels (wolf, grass) and correct labels (sky).

To define the evaluation measures, we assume that an image e; € E,j=1..N should be classified into the set of true object labels
Yj={C;,Cn,....C;}, Y; = C,where E is a set of images, C is a set of all class labels and N = |E| corresponds to the number of images in the set
E. For an example image e;, the set of labels that are predicted by a classifier is denoted as ¢;.

Instance-based accuracy is defined as the average ratio of correctly assigned labels and all labels assigned to each example by the
classifier and the true labels:

IYi N @i

Accuracy;, = N Z NV
1

Instance-based precision is defined as the average ratio of correctly assigned labels and all labels assigned to each example by the
classifier:

YN
Precision;,; = Z ! @il
z =1 lil-
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Instance-based recall is defined as the average ratio of labels correctly assigned by the classifier and all labels in the ground truth for
each example:

1Y N gl
Recall;,; = N '; WL

The instance-based F-Measure is the harmonic mean of precision and recall:

These measures reach their best value at 1 and the worst value at 0.
Label-based measures are computed by averaging instance-based measures over all labels. The case of scene-level annotation in the
second tier is treated as single-label classification, Yj‘ = ‘(pj| =1, and label-based measures are used.

8.2. Data

To evaluate the proposed two-tier model for image annotation, a part of the Corel image dataset related to outdoor scenes [2] was used.

The features were extracted from images that were sized 128 x 192 pixels or 192 x 128 pixels. We used images labelled with one or
more labels from the set C of 54 object classes related to natural and artificial objects such as Airplane, Bird, Lion, Train, etc., and back-
ground objects like Ground, Sky, Water, etc., provided by [10]. Additionally, we labelled the images with one of the 20 elements from the
set SC related to outdoor scenes such as SceneTrain, ScenelLion, Inland, etc.

Some labels were too rare to effectively train the classifier, and images that correspond to those labels were excluded from the data,
leading to the number of object and scene labels to be reduced and the average number of images for object and scene labels to be
increased. The resulting simplified dataset is more suitable for the learning of classification models. The details of the dataset before and
after simplification are presented in Table 1.

8.3. Annotation results

The label-based and instance-based evaluation results for object-level annotation in the first tier of the proposed system are presented
in Table 2, where different feature subsets and different classifiers (RAKEL, ML-KNN and NB along with the data transformation) are
considered. Overall, the best results considering the label-based F1 score are obtained using the NB classifier independently of the used
feature subset, due to significantly better achieved recall than with other methods. However, in instance-based measures NB obtained the
worst results with both precision and recall. The RAKEL-C4.5 performed best in instance-level measures but performed worse than NB in
label-based measures. For both instance-based and label-based measures, the RAKEL-kNN achieved slightly lower results than the best
classifier. The RAKEL-C4.5 also performed well with all subsets of features, although their dimensions varied between 48 in the case of
dominant colours and 740 when all features were used.

The achieved results are better than the published results for 28 object classes, in the same dataset [13,16,4]. In [4], the authors
reported average precision for the task of automatic image annotation at object level achieved with the dMRF model based on Markov
random fields defined in [4] and the dInd translation model from [10]. The dMRF model achieves a label-based precision of 21%, while the
dind model achieves a label-based precision of 20%. When the original framework based on Fuzzy Petri Nets was used for image
annotation at object level, the achieved label-based precision rate was 37%, while the label-based recall rate was 48% [13], but with
additional expert involvement in building the models. With the more straightforward classical machine-learning approach using the same
feature set and the Naive Bayes classifier using image segments, somewhat lower scores were achieved, with label-based precision of
32.6% and recall of 27.5% [16].

Considering that the results of automatic image annotation in the first tier can include object labels that do not correspond to the context
of an image, the obtained annotation set is refined using the proposed inference based annotation refinement algorithm and the facts from
the knowledge base related to the co-occurrence relationships between objects. In the proposed model, objects that do not fit the likely
context of the image are discarded to reduce the propagation of errors in the second tier. As a consequence, the average precision of the
image annotation can be increased if there is only one intruder class among the object-level annotation as in Fig. 14(a), where the flower is
the intruder class. In Fig. 14(b), the majority of labels for an image are wrong (airplane, cloud, sky), so the annotation refinement procedure
discards the true label (dolphin), and the precision falls.

Automatic image annotation in the second tier of the proposed model is performed by the inference-based scene classification
algorithm (Algorithm 4) given that the facts about the domain are known. The input to the algorithm is the refined annotation set
comprising object classes obtained using RAKEL-KNN and all features. The obtained label-based precision of scene-level annotation is 68%
and the recall is 59% (F1 score 58%). The results depend on the results of the first tier that are used as input. For those scenes for which
there is one main object class which is highly discriminant for that scene (e.g. train for SceneTrain), it is crucial to detect that object in the
first tier. In this kind of scene, background objects that are common to most scenes do not play an important role, but in scenes without
one prominent object (e.g. Sea, Inland) they are important. For example, in the case of object-level annotation, the best F1 score is obtained
for train (0.8), tracks (0.77) and polarbear (0.68), and the worst for wolf (0.07) classes. This is reflected in the scene-level classification,
where SceneTrain has the best precision (0.86) and SceneWolf among the worst (0.30). For background objects, the best F1 scores are for
sky (0.65) and grass (0.66) and the worst F1 for mountain (0.11) and clouds (0.13). Differences in results at the object level may be due to an
imbalance in the number of examples per class and the fact that in case of multi-label classification, partially correct annotation is
possible. In the case of similar classes, e.g. lion and tiger, cloud and sky in multi-label classification, both labels can be assigned.

The obtained results on second tier of the proposed annotation system outperform the results on the scene-level annotation obtained
on the same data set and published in [16] where knowledge-based approach of automatic image annotation was combined with ordinary
classification of segmented images. This was to some extent been expected, since the obtained results on the object level with multi-label
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classification were better and have been used as inputs to the inference algorithms for scene classification. The part of the improvement in
results can also be attributed to using of an m-estimate of probability when modelling the confidence of relations and weighting of the
computed probabilities, to make accumulated knowledge more representative and less dependent on the examples in the data set.

For comparison with ordinary classification approach, scene-level annotation was also performed using the Naive Bayes classifier and
the same feature sets that were used for object classification. The evaluation measures for both the proposed two-tier image annotation
system and for the Naive Bayes are presented in Table 3.

The best classification results for Naive Bayes were obtained using the whole feature set, giving a precision of 40%, a recall of 69% and
an F1-score of 50%. It can be noted that for the Naive Bayes classifier 36 features (DC1..DC5 + CM) performed in a similar manner to the
GIST descriptor with 512 elements, which suggests that dominant colours contain important information about scene classes. The best
overall performance considering the F1 score was obtained using the proposed two-tier image annotation system, thanks to much higher
precision and despite somewhat reduced recall. The effects of the knowledge-based annotation refinement step, which can reduce the
error propagation from the object classification, although in some cases reducing the useful information available for the inference of
scenes, can explain such results. Fig. 15 shows examples of image annotation obtained by the proposed model.

9. Conclusion

The aim of this paper has been to present a two-tier image annotation model where the first tier corresponds to object-level and the
second tier to scene-level annotation. The tiers are defined to separate different levels of image interpretation, one that is very dependent
on the visual content and the other which contains knowledge about the domain in general. In the first tier, images are annotated with
labels of objects present in them, using multi-label classification methods for low-level features extracted from images. In the second tier,
the fuzzy-knowledge-representation scheme based on the Fuzzy Petri Net (KRFPN) is proposed to represent knowledge about the image
domain and to support reasoning about scenes and objects. Two data-driven algorithms are proposed to automatically extract knowledge
about the domain from the training data set. The first is used to define relationships between objects and the corresponding confidence
values, and the second defines the scenes as compositions of objects and sets the corresponding confidence values. To make the accu-
mulated knowledge more general and less dependent on the examples in the data set, especially when some of the data are incomplete or
missing or when training set is not large enough, the computed probabilities are weighted and an m-estimate of probability is introduced
when modelling the confidence of relations. This increases the quality of acquired knowledge and enables addressing the annotation of
images from a broader domain. If automatically generated facts and rules are not representative enough or if their reliability is not
properly set, an expert can review or modify rules or add new ones to improve the knowledge base completeness and accuracy, as well as
to enhance the inference process.

Inference-based algorithms are defined for refinement of annotation set obtained with multi-label classification in the first tier and for
automatic scene classification in the second tier. The algorithms draw conclusions using stored fuzzy knowledge.

Specifically, the proposed inference based annotation refinement algorithm provides reasoning about consistency of object classes to
detect misclassified object labels and to exclude them from the annotation set, and the proposed inference based scene classification
algorithm provides inference about relationships between scene classes and their object components for scene classification. Consistency
checking of object labels can improve the precision of object-level annotation and reduce the propagation of errors through the hier-
archical structure of concepts during the inference of scenes. More abstract scene concepts can be inferred with the same inference-based
scene classification algorithm if domain knowledge is structured at varying levels of generality and if appropriate relations between
concepts are defined. However, an expert should provide this kind of relations in the scheme, as they cannot be automatically generated
from training data.

The proposed inference-based algorithms rely on the execution of the Petri nets and utilise the concept of finite inference trees. Their
complexity is O(nm), where n is the number of places (concepts) and m is the number of transitions (relations) in the scheme.. In practice,
the whole net is not usually used for inference, but only parts that can be reached from the initially marked places. During the execution of
the algorithm, the generation of inference trees can be manually limited to a predefined level or appropriate conditions can be defined to
stop further generation of tree.

The proposed two-tier annotation model is adaptive and each tier can be independently used, modified and improved, so the proposed
annotation refinement and scene classification algorithms can be used regardless of the classification method used in the first tier.
Therefore, different types of classification methods along with different subsets of features were tested on an outdoor image dataset in the
first tier, to get the best possible result since these results influence the results on the second tier as well as the overall annotation results.

The feature subsets used in the first tier are composed of dominant colours, image moments, and GIST descriptors, and were tested
with the RAKEL, ML-kNN and Naive Bayes classification methods. The obtained results are better than those already published and related
to the same set of images and so are more useful as inputs to the proposed inference-based algorithms in the second tier.

This research was focused on developing the annotation system for images within the domain of outdoor scenes. For images from other
domains, it is necessary to collect data that will be used to extract knowledge and to model a fuzzy knowledge representation scheme that
supports reasoning about concepts in new domain.

The proposed algorithms for automatic acquisition of knowledge and for reasoning about objects and scenes are defined in a general
manner and probably minor adjustments would be sufficient for use in other tasks. In the future, we plan to adapt the proposed
knowledge representation scheme and the supporting algorithms for use in video annotation, by including the temporal dimension into
the model.
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