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Abstract—The widespread use of video recording devices to
obtain recordings of people in various scenarios makes the prob-
lem of privacy protection increasingly important. Consequently,
there is an increased interest in developing methods for de-
identification, i.e. removing personally identifying features from
publicly available or stored data. Most of related work focuses
on de-identifying hard biometric identifiers such as faces. We
address the problem of detection and de-identification of soft
biometric identifiers – tattoos. We use a deep convolutional
neural network to discriminate between tattoo and non-tattoo
image patches, group the patches into blobs, and propose the de-
ientifying method based on replacing the color of pixels inside
the tattoo blob area with a values obtained by interpolation
of the surrounding skin color. Experimental evaluation on the
contributed dataset indicates the proposed method can be useful
in a soft biometric de-identification scenario.

I. INTRODUCTION

The problem of privacy invasion has become increasingly
important in recent decades, with the widespread use of video
recording devices to obtain recordings of people in various
scenarios. In order to reduce privacy risks, the protection
of personal data is nowadays strictly regulated by law in
many jurisdictions, requiring the stored data to be de-identified
(e.g. the Data Protection Directive of the European Union).

In case of images, de-identification of personal data entails
obfuscating or removing personally identifying features of the
filmed individuals, usually in a reversible fashion so that law
enforcement can access them if necessary. One of the most
widespread de-identification techniques, used in commercial
systems such as Google Street View, involves detecting and
blurring the faces of recorded individuals. This approach,
however, does not take into account soft biometric and non-
biometric features like tattoos, clothing, hair color and similar,
that can be used as cues to identify the person [19]. Mo-
tivated by the need for soft and non-biometric feature de-
identification, we propose a method for detecting and de-
identifying tattooed skin regions. We use a deep learning
approach and explore several neural network models, training
them to act as patch classifiers, labeling each patch of an input
image as either belonging to a tattoo or not. After detection,
the tattoo area is de-identified by replacing it with the color
of the surrounding skin.

II. RELATED WORK

There have been relatively few works addressing the prob-
lem of tattoo detection in unconstrained images. Most research
in de-identification deals with hard biometric features, with

an emphasis on the face [8], while a much smaller volume is
devoted to soft and non-biometric features [19]. Research on
tattoo detection is typically not motivated by de-identification,
but by forensic applications, where the goal is to build content-
based image retrieval system for tattoos that would help law
enforcement. One such system is proposed by Jain et al. [11],
where a cropped tattoo is segmented, represented using color,
shape and texture features and matched to the database. Han
and Jain [9] extend the idea of such a system by enabling
sketch-to-image-matching, where the input image is a sketch
rather than a photo, while the database contains real tattoo
images. They use SIFT descriptors to model shape and appear-
ance, and matching is performed using a local feature-based
sparse representation classification scheme. Kim et al. [12]
combine local shape context, SIFT descriptors and global
tattoo shape for tattoo image retrieval, achieving robustness
to partial shape distortions and invariance to translation, scale
and rotation.

Heflin et al. [10] consider detecting scars, marks and tattoos
“in the wild”, i.e. in unconstrained images that can contain
a tattoo of an arbitrary scale anywhere. In their method,
tattoo candidate regions are detected using graph-based visual
saliency, and GrabCut [20], image filtering and the quasi-
connected components technique [4] are employed to obtain
the final estimate of the tattoo location.

Marčetić et al. [25] propose an experimental system for
tattoo detection and de-identification. To detect the tattoos,
the uncovered body parts are first detected based on the skin
color model and filtered based on geometrical constraints.
Then, the regions of interest are localized based on holes and
cutouts in the skin regions. Finaly, to confirm the presence
of the tattoo, SIFT features are extracted from regions of
interest and compared to the SIFT features stored in the tattoo
database. The tattoos are then de-identified by replacing the
tattoo regions with the patches obtained from the surrounding
skin area.

Designing hand-crafted features that differentiate tattoos
from background is very hard, given the degree of variability
between tattoo designs and the fact that tattoos are often
purposefully designed to resemble many real world objects
[18]. Recently, convolutional neural networks (CNNs) were
shown to be successful in automatically learning good features
for many challenging classification tasks [13], [14]. Also, they
have been successfully applied to problems of scene labelling
[6] and semantic segmentation [17]. Building on this success,
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Fig. 1. The architecture of the ConvNet model inspired by the VGGNet that achieved the best results in tattoo patch labeling

in this work we use a deep convolutional neural network as a
patch-based tattoo detector.

III. DETECTING AND DE-IDENTIFYING THE TATTOO AREA

A. Tattoo detection

Our proposed method for tattoo detection uses a convolu-
tional neural network for image patch labeling. By traversing
the image using a small sliding window of the size N×N , we
obtain classifications of each window patch as either belonging
to a tattoo or not. The final output of our method is a set of
masked image regions that are candidate tattoo locations.

Since there is no exact rule on how to design a deep neural
network for a particular problem, we consider several deep
learning architectures that have recently proved successful
in other classification tasks. In particular, we consider the
following architectures:

(i) An architecture consisting only of multiple fully con-
nected layers with no convolutional layers at all, similar
to one proposed by Ciresan et al. [28];

(ii) An architecture inspired by the AlexNet of Krizhevsky
et al. [13], the first part of which consists of several
convolutional layers, with a max-pooling layer after each
of them, followed by several fully connected layers;

(iii) An architecture consisting od several pairs of convolu-
tional layers of very regular structure, with max-pooling
layers between each pair, followed by several fully con-
nected layers (Fig. 1), inspired by the recently proposed
VGGNet by Simonyan and Zisserman [23].

The input to the network is an N×N color image patch (we
assume the RGB color model). The patch has to be classified
either as belonging to the tattoo or not, depending on whether
its center lies inside the polygon that demarcates the tattoo.

B. Tattoo de-identification

The general idea of the proposed process of tattoo de-
identification is as follows. First, we locate the tattoo(s) in the
image (Fig. 2 (a)) by applying the trained convolutional neural
network described in the previous subsection on different
positions in the image in a sliding window manner. To increase

the speed of this step, we slide the window with the stride k (in
the experiments, we set k = 8). At each position we classify
the center of the patch as either belonging to the tattoo area
or not, according to the output of the network. If the result
is affirmative, we label the pixels in the surrounding local
square (of the same size as the stride) as belonging to the
tattooed area. To remove the noise, we apply morphological
opening, thus removing some of the false positives, followed
by morphological closing, thus filling the small gaps inside
the tattoo area. The described steps result in the binary mask
roughly corresponding to the tattooed area (Fig. 2 (b)).

The de-identification of the tattoo area is performed by
replacing the colors of the pixels belonging to the tattooed
area with the color of the surrounding skin. The skin at
different sides of the tattoo can be of different colors, due
to various factors such as shadows, lighting conditions, the
skin condition, etc. Therefore, simply replacing the whole
tattoo area with the same color would not be appropriate,
as it would not result in natural looking image. Instead, we
calculate the new color of each pixel of the de-identified area
by interpolating its value based on all the surrounding skin
pixels. To find all surrounding skin pixels, we morphologically
dilate the previously found binary mask corresponding to the
tattooed area (Fig. 2 (c)) and find the contour of the resulting
blob (Fig. 2 (d)). Since the tattoo can be at the edge of
the skin (i.e. bordering with the background and not only
with the skin), some pixels of the contour may not belong
to the skin. We therefore classify each pixel as skin or as
non-skin, based on the skin color model, as proposed by
Jones and Regh [26]. Contour pixels classified as non-skin are
removed from further consideration (Fig. 2 (e)). Each pixel
inside the blob corresponding to the tattoo is then replaced
with the color obtained by interpolating the color of the
contour pixels classified as belonging to the skin, using inverse
distance weighing interpolation. This means that the new pixel
value is calculated as a weighted sum of skin contour values,
where each contour point contributes with a weight inversely
proportional to its distance to the pixel being replaced.



(a) Original image (b) Tattoo area detected
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Fig. 2. The process of tattoo detection and de-identification

IV. EXPERIMENTS

The experiments were carried out on a publicly available
dataset consisting of manually annotated tattoo images from
the ImageNet database [21]. The dataset was assembled in the
course of our earlier work on tattoo detection [27]

A. The employed dataset
Each of the images in the dataset contains one or more

tattoos, and each tattoo is annotated using connected line
segments. A few examples are shown Fig. 3. It can be seen
that the outline of each tattoo is captured quite precisely, given
the inherent limitations of a line-based approximation.

Fig. 3. Examples of annotated tattoo images.

B. Training the network
The training set for the convolutional neural network was

assembled by randomly sampling patches from each tattoo
image in the dataset and categorizing them as either positives
or negatives depending on their position w.r.t. the annotation.
Example patches are shown in Fig. 4.

The network was trained by optimizing the mean squared
error loss function. We used stochastic gradient descent with
momentum set to 0.9 and the mini-batch of 32. The learning
rate was set to 0.1. We performed the training for 40 epochs
at most, with early stopping if the validation loss has not
improved for 3 epochs. The duration of the training depended
on the size of the patches, ranging from 10 minutes for
smallest patches to more than 17 hours for the largest.

We implemented the described network architectures in
Python, using Theano [2], [3] and Keras [5] libraries.

TABLE I
EVALUATION OF THE NETWORK PERFORMANCE ON DIFFERENT PATCH

SIZES

Patch size 8× 8 16× 16 24× 24 32× 32 40× 40
False negatives 691 641 887 360 404
False positives 595 459 258 760 673

Accuracy 0.7953 0.8207 0.8134 0.8174 0.8244

C. Detection performance evaluation

In total, we extracted 36820 patch images, out of which
18400 positive and 18420 negative examples. The patches
were divided into training set (containing 27616 examples:
13800 positive and 13815 negative), validation set (3068
examples: 1533 positive and 1535 negative) and testing set
(6136 examples: 3077 positive and 3070 negative). Patches
belonging to the same image were all added to the same set.

The network was trained using varying patch sizes (8× 8,
16×16, 24×24, 32×32 and 40×40) to determine the optimal
patch size. While the larger patches are expected to provide
more information about context, the network that utilizes them
is slower to train and to test.

Out of the three tested architectures (see section III.A), the
architectures (i) and (ii) achieved lower performances, with
accuracies ranging from 61.9% to 77.3%. The best results
were achieved with the architecture (iii) (shown in Fig. 1.),
which achieved accuracy of cca 80% − 83%. The results
obtained by this third architecture for different patch sizes are
summarized in Table I. As we can see, the results improve
in terms of accuracy with the increase in image patch size,
however, the difference in accuracy is not very pronounced;
i.e. we can say that results for all the patch sizes are similar.

D. Blob and contour detection

The results of the blob and contour detection as a prepara-
tion for de-identification were evaluated qualitatively. Several
succesfull (first three columns) and unsuccesfull (last column)
results can be seen in Fig. 5.

As we can see, most of the tattoo area was succesfully found
by the trained CNN, but some gaps remained inside the tattoo
area, and some false positives were found outside of it, both of
which were succesfully eliminated by applying mathemathical
morphology. The results obtained in such a way can be used
as described in section III.B. to de-identify the tattoed image
region.



(a) tattoo patches (b) background patches

Fig. 4. Example extracted patches from our dataset (patch size 32× 32).

(a) The original images

(b) Tattoo detection by CNN

(c) Tattoo blobs after morphological operations

(d) Contours of the dilated blobs

Fig. 5. Results of the tattoo localization.

An example of such de-identification is shown in Fig. 6. For
the most part, the tattoo is removed, although some problem
remain due to the fact that some of the bordering parts of the
tattoo were not detected.

Fig. 6. Sample de-identification result.

V. CONCLUSION AND OUTLOOK

We proposed a method for finding and de-identifying tat-
tooed skin regions. We used a deep convolutional neural
network to label image patches as either belonging to a tattoo
or not. The tattoo regions found in such a way were de-

identified by replacing their color with the value obtained by
interpolation from the surrounding skin.

Our findings indicate that the proposed approach can be
used to detect and de-identify candidate tattoo regions in
an image. The most critical part of the process is tattoo
detection. We estimate that the deep learning approach with
convolutional layers has good potential to learn to detect
tattooed areas; however, the problem of false positives and
false negatives is still visible in the experiments we conducted.
The model often either learns to discriminate between skin
color and all the rest, resulting in a number of false positives
in the background, or learns to count as tattoo patches only the
patches bordering with skin color, resulting in false negatives
inside the homogenous tattoo areas. We speculate that the
problem could be addressed by learning the model with larger
patches (e.g. 64 × 64, 128 × 128, or even 256 × 256) and
significantly enlarging the training set size by adding small
modifications (translations, rotations, noise, etc) to the existing
dataset, as suggested in many works on deep neural networks.
We are planning to investigate these possibilities in the future.

Another possible improvement would consist in combining
this method with other stages of a de-identification pipeline,
i.e. pedestrian detection and segmentation, in order to solve the
problem of false positives. As our qualitative analysis shows
that the majority of false positives are in the surroundings
rather than on the person, one possibility is to run the method
only on the outputs of a person detector. Finally, to improve
the naturalness of the de-identified regions, the texture of the
surrounding skin could also be taken into account along the
color.
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