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Abstract. The main precondition for applications such as face recognition and  

face de-identification for privacy protection is efficient face detection in real 

scenes. In this paper, we propose a hybrid cascade model for face detection in 

the wild. The cascaded two-stage model is based on the fast normalized pixel 

difference (NPD) detector at the first stage, and a deep convolutional neural 

network (CNN) at the second stage. The outputs of the NPD detector are char-

acterized by a very small number of false negative (FN) and a much higher 

number of false positive face (FP) detections. The FP detections are typically an 

order of magnitude higher than the FN ones. This very high number of FPs has 

a negative impact on recognition and/or de-identification processing time and 

on the naturalness of the de-identified images. To reduce the large number of 

FP face detections, a CNN is used at the second stage. The CNN is applied only 

on vague face region candidates obtained by the NPD detector that have an 

NPD score in the interval between two experimentally determined thresholds. 

The experimental results on the Annotated Faces in the Wild (AFW) test set and 

the Face Detection Dataset and Benchmark (FDDB) show that the hybrid cas-

cade model significantly reduces the number of FP detections while the number 

of FN detections are only slightly increased.  

Keywords: Face Detection in the Wild, Normalized Pixel Difference Model, 

Deep Convolutional Neural Networks. 

1 Introduction 

The main precondition for successful face-based authentication (verification or identi-
fication) and face de-identification for privacy protection [1] is efficient face detection 
in real scenes. The detection of faces in the wild is a challenging and very hard com-
puter vision task. Some of the main constraining factors are the variability and diversi-
ty of the face poses, occlusions, expression variability, different illumination condi-
tions, scale variations, and the richness of colour and texture. 

Recently, many methods have been proposed for face detection: the unified model 
for face detection, pose estimation and landmark localization called the Deformable 
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Parts Model (DPM) [2], a detector based on multiple registered integral image chan-
nels [3], a face detector based on Normalized Pixel Difference (NPD) [4], a deep neu-
ral network detector [5], and a very deep convolutional network detector [6]. An alter-
native approach to robust face detection is based on cascades consisting of multilevel 
homogenous or hybrid stages. In general, the first stages are very fast but less accurate 
in the sense of FP detections, and the following stages are used for reducing FP detec-
tions with minimal impact on FN detections. One of the earliest homogenous cascade 
models for face detection is described in [7]. The model was used for fast face detec-
tion and localization in images using nonlinear Support Vector Machine (SVM) cas-
cades of a reduced set of support vectors. The cascaded model achieved a thirty-fold 
speed-up compared to using the single level of a SVM. In [8], a face detection algo-
rithm, called DP2MFD, capable of detecting faces of various sizes and poses in uncon-
strained conditions is proposed. It consists of deep pyramid convolutional neural net-
works (CNNs) at the first stage, and a deformable part model (DPM) at the second 
stage. The inputs of the detector are a colour image resolution pyramid with seven 
levels. Different CNNs are used for each level. The detector output is based on a root-
filter DPM and a DPM score pyramid. Extensive experiments on AFW, FDDB, 
MALF, IJB-A unconstrained face detection test sets have demonstrated state-of-the-art 
detection performance of the cascade model. A joint cascade face detection and align-
ment is described in [9]. It combines the Viola-Jones detector with a low threshold to 
ensure high recall at the first stage, and pose indexed features with boosted regression 
[10] are used for face detection at the second stage. A two-stage cascade model for 
robust head-shoulder detection is introduced in [11]. It combines several methods as 
follows: a histogram of gradients (HOG) and a local binary patterns (LBP) feature-
based classifier at the first stage, and a Region Covariance Matrix (RCM) at the second 
stage. In [12], cascade architecture built on CNNs with high discriminative capability 
and performance is proposed. The CNN cascade operates at multiple resolutions and 
quickly rejects the background regions at fast low-resolution stages, and carefully 
evaluates a small number of challenging candidates at the last high-resolution stage. To 
improve localization effectiveness and reduce the number of candidates at later stages, 
a so-called CNN-based calibration stage is introduced. The proposed cascade model 
achieves state-of-the-art performance and near real time performance for VGA resolu-
tion (14 FPS on a single CPU). In [13], we proposed a two-stage cascade model for 
unconstrained face detection called 2SCM. The first stage is based on the NPD detec-
tor, and the second stage uses the DPM. The experimental results on the Annotated 
Faces in the Wild (AFW) [14] and the Face Detection Dataset and Benchmark (FDDB) 
[15] showed that the two-stage model significantly reduces false positive detections 
while simultaneously the number of false negative detections is increased by only a 
few. These recent papers have shown that a multi-stage organization of several detec-
tors significantly improves face detection results compared to "classical" one-stage 
approaches. 

In this paper, we present a modification of the two-stage cascade model 2SCM de-
scribed in [13] in such a way that the second stage is implemented by a CNN instead of 
a DPM. This modified hybrid two-cascade model is called the HCM. 
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2 Theoretical background 

In the proposed hybrid two-stage cascade HCM for face detection in the wild, the 

NPD-based detector [4] and the CNN [16] are used. A short description of both stages 

follows. 

2.1 Normalized pixel difference 

Authors [4], inspired by Weber's Fraction [17] in experimental psychology, devised an 
unconstrained face detector based on the normalized pixel difference. The NPD fea-
tures are defined as: f(vi,j, vk,l) = (vi,j - vk,l) / (vi,j + vk,l), where vi,j , vk,l ≥ 0 are intensity 
values of two pixels at the positions (i, j) and (k, l). By definition, f(0,0) is 0. The NPD 
feature has the following properties [4]: i) the NPD is antisymmetric; ii) the sign of 
NPD is an indicator of the ordinal relationship; iii) the NPD is a scale invariant; iv) the 
NPD is bounded in [-1, 1]. These properties are useful because they reduce feature 
space, encode the intrinsic structure of an object image, increase robustness to illumi-
nation changes, and the bounded property makes an NPD feature amenable for thresh-
old learning in tree-based classifiers. Due to limitations with a stump, as a basic tree 
classifier with only one threshold that splits a node in two leaves, the authors [4] used 
for learning a quadratic splitting strategy for deep tree, where the depth was eight.  

For practical reasons, the values of the NPD features are quantized into L = 256 
bins. In order to reduce redundant information contained in the NPD features, the 
AdaBoost algorithm is used to select the most discriminative features. Based on these 
features, a strong classifier is constructed. Pre-computed multiscale detector templates, 
based on the basic 20×20 learned face detector, are applied to detect faces at various 
scales. The score ScoreNPD(I, Si) is obtained based on the result of the 1226 deep 
quadratic trees and the 46401 NPD features, but the average number of feature evalua-
tions per detection window is only 114.5. 

The output of the NPD detector is represented by the square regions Si, i = 1, 2, ... 

n, where n is the number of the detected regions of interest in an image I. For each 

region Si in an image I, the score ScoreNPD(I, Si) is calculated [4]. The regions Si, i = 

1, 2, ... , j ≤ n, with scores ScoreNPD(I, Si) greater than some predefined threshold 

θNPD, are classified as faces. Originally, to achieve a minimum FN, a threshold θNPD = 

0 was used [4]. 

2.2 Convolution neural network 

In general, a deep CNN is composed of a series of stacked stages. Each stage can be 

further decomposed into several stacked layers, including a convolutional layer, a 

rectifying unit or a non-linear activation function, a pooling layer and sometimes a 

normalization layer [18]. In our model, we used the deep CNN architecture proposed 

in [19], which is supported by the Dlib library [19]. The CNN architecture (see Table 

1) is designed for face detection and localization. The localization is based on combi-

nation of the sliding window and max-margin object detection (MMOD) approaches 

[16]. This specific CNN consists of seven stages implemented as convolutional layers 
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with a different number of convolutional kernels all having the same size of the first 

two dimensions, i.e. (5×5). Note that the CNN does not have pooling layers. The last 

stage is implemented with max-margin object detection (MMOD) [16]. The output of 

the CNN is specific in such a way that it specifies both the size and location of faces.  

An input to the CNN is an original image M×N pixels. From this image a resolu-

tion image pyramid consisting of six levels is created. The first six stages, layers 1 to 

12, of the CNN have a convolutional layer followed by a rectifying unit with an acti-

vation function defined as f(x) = max(0, x), where the first three and the last three 

stages have a 2×2 and 1×1 stride, respectively. The seventh stage consists of only the 

convolutional layer with one 9×9×45 kernel with a 1×1 stride (see Table 1). This last 

stage of the CNN is specific due to the characteristics of the face localization problem 

(where both the size and location of a face are required) and thus it is implemented 

with max-margin object detection (MMOD). Specific details of the CNN architecture 

and number of parameters are given in Table 1. The 180,495 parameters of the CNN 

were learned on a dataset of 6,975 faces [20]. This dataset is a collection of face im-

ages selected from ImageNet, AFLW, Pascal VOC, the VGG dataset, WIDER, and 

FaceScrub (excluding the AFW and FDDB dataset). 

 

Table 1. Architecture of the CNN for Face Detection and Localization 

 Stage Layer Kernels Number of 

Parameters No. No. Type Number Size Stride 

1 
1   con 16 5×5×3 2×2 16×5×5×3=1,200 

2   relu - -   -               0 

2 
3   con 32 5×5×16 2×2 32×5×5×16=12,800 

4   relu - -   -              0 

3 
5   con 32 5×5×32 2×2 32×5×5×32=25,600 

6   relu - -   -              0 

4 
7   con 45 5×5×32 1×1 45×5×5×32=36,000 

8   relu - -   -              0 

5 
9   con 45 5×5×45 1×1 45×5×5×45=50,625 

10   relu - -   -              0 

6 
11   con 45 5×5×45 1×1 45×5×5×45=50,625 

12   relu - -   -              0 

7 
13   con 1 9×9×45 1×1 1×9×9×45=3,645 

14 MMOD - -   -              0 

Total number of parameters      180,495 
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3 Hybrid Cascade Face Detector 

The first stage of the HCM is based on the NPD, and the second stage is the CNN. 

The NPD is very fast and it achieves low FN face detections for unconstrained scenes. 

The drawback of the NPD is a high number of FPs (typically an order of magnitude 

higher than FN face detections) when the operating point is set to achieve minimal FN 

detections. The originally proposed threshold θNPD for NDP detection is zero [4]. Fig. 

1 illustrates a typical result of the NPD detector for an image with a rich texture in 

which the number of FP face detections is relatively high. 

 

Fig. 1. Example of the results of an NPD detector (applied on the AFW test set) for the thresh-

old θNPD = 0. The green squares denote ground truth, the red true positive, and the blue squares 

denote false positive. The values NS corresponding to ScoreNPD(I, Si) are given at the bottom 

of each square. 

The number of FP face detections for the NPD detector can be reduced by increasing 
the θNPD, but this has negative effects on FNs.  

The output of the NPD detector is represented by square regions Si = (xi, yi, si),        
i = 1, 2, ..., j, where xi and yi are the coordinates of a square region centre, si is the size 
of the region (si×si), and j is the number of detected faces in an image I. Note that for 
all Si, i = 1, 2, ..., j, the score ScoreNPD (I, Si) is greater than zero [4].  

In order to reduce FP face detections, but to keep the FNs as low as possible, the 
outputs of the NPD detector that have a ScoreNPD(I, Si) in the interval corresponding 
to vague face region candidates are forwarded to the CNN detector to classify the re-
gions Si as face or non-face. 
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The procedure of the HCM is described as follows:  

NPD decision stage  

For every output square region Si of the NPD in an image I 

i) IF ScoreNPD(I,Si)   [0, θ1], THEN the square region Si is classified as non-
face region and it is labelled as a non-face. The square region Si is not forward-
ed to the CNN stage; 

ii) IF ScoreNPD(I,Si)   [θ2, ∞], THEN the square region Si is classified as a face 
region and it is labelled as a face. The square region Si is not forwarded to the 
CNN stage; 

iii) IF ScoreNPD(I,Si)   <θ1, θ2>, i.e. ScoreNPD falls in an interval corresponding 
to the vague face region candidates, THEN the square region Si is forwarded to 
the CNN detector; 

CNN decision stage 

iv) expand the square region Si and resize Si to uniform size;  

v) IF the output of the CNN, called the confidence value ConValCNN(I,Si), is 
higher than θ3, THEN the vague face region candidate Si with the original di-
mensions is labelled as a face;  

vi) otherwise the vague face region candidate Si is labelled as a non-face. 

 

Note that ConValCNN(I,Si) expresses the confidence that a face is detected in an image 
I at a region Si and is defined in [16], [19]. 

The first two thresholds θ1 and θ2 define three intervals for the NPD score 
ScoreNPD(I,Si). The third threshold θ3 defines two intervals for the CNN confidence 
value ConValCNN(I,Si). These thresholds are determined experimentally on a subset of 
AFW as θ1 = 5, θ2 = 67, θ3 = 0.4. They define the operating point of the HCM face 
detector, and are selected to maximize a sum of Precision and Recall, where Precision 
= TP/(TP + FP) and Recall = TP/(TP + FN), where TP is the number of correctly de-
tected faces. All Si which are inputs to the CNN stage are expanded by 75% of the 
original size in each direction and then resized to 225×225. In general, the CNN detec-
tor implemented on a single CPU (for high resolution images, e.g. 10 M pixels or 
more) is typically about an order of magnitude slower than the NPD detector. 

This shortcoming of the CNN is circumvented in the HCM in such a way that the 
CNN is applied only to vague face candidate regions Si (all scaled to small resolution 
~50 K pixels). These characteristics justify using the CNN detector at the second stage 
only on a relatively small number of scaled regions Si, selected based on the criterion 
in iii) (see the HCM procedure), and these regions are a small fraction of the whole 
area of an image I. For the implementation of the NPD and CNN we used program 
implementations [4] and [19], respectively. 
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4 Experimental results 

In all experiments, we selected the same two test sets that were used in our previous 
work to compare the results obtained by the HCM with 2SCM [13]. The test sets are 
the AFW [14], consisting of 205 images that contain in total 468 unconstrained faces, 
and the subset of the FDDB [15] which contains 2,845 annotated images, with 5,171 
unconstrained faces in total. On these two test sets, we performed five experiments as 
follows: 

i) The NPD detector (ScoreNPD(I,Si) > θNPD, where the threshold θNPD = 0 as originally 
proposed in [4]) achieved the results given in Table 2 and in Figs 5(a) and (e).  

ii) The DPM detector (threshold θDPM = – 0.65 [2]) achieved the results given in Table 
2 and in Figs 5(b) and (f). 

Based on the above results of the first two experiments, we can see that the NPD detec-
tor, in general, achieved relatively low FN but high FP face detections in comparison 
with the DPM.  

iii) The CNN detector (ConValCNN(I,Si) > θCNN, where the threshold θCNN = 0.4 [16]) 
achieved the results given in Table 2 and in Figs 5(c) and (g).  The results showed that 
the CNN outperforms both NPD and DPM detectors in the sense of FNs and FPs. Note 
that all 23 FPs (for the AFW test set) are due to superficial manual annotation. Fig. 2 
depicts all 23 FPs for the AFW (first row) and all 29 FPs for FDDB (second row) 
which are not manually annotated as faces thus true FPs is 0 for both test sets.  

 

 

Fig. 2. Faces detected by the CNN in the AFW (first row) and FDDB test sets (second row) 

which are not manually annotated as faces.  

Note that the face detection time of the CNN is greater than that of the NPD and 
the DPM when a single CPU is used. Using a GPU, the face detection time of the CNN 
is comparable with that of the NPD (on a single CPU). For example, the single CPU 
processing time for the NPD detector is 12.59 s for an image resolution 2138×2811, 
while for the CNN detector, the processing time for a single CPU and the GPU (384 
cores) is 143.54 s and 3.55 s, respectively. The single CPU processing time for the 
NPD detector is 0.94 s for an image resolution 768×1024, while for the CNN detector, 
the processing time for a single CPU and the GPU (384 cores) is 17.05 s and 2.10 s, 
respectively. 

iv) The two-stage cascade model 2SCM described in [13] achieved the results given in 
Table 2 and in Figs 5(d) and (h). 

v) The proposed HCM described in Section 3, achieved the following results (Table 2, 
Figs 5(i) and (j)): on the AFW test set 28 faces were not detected (FNs) among 468 
faces in 205 images. Note that the 783 FPs from the first stage of the HCM are reduced 
to only 4 true FPs at the second stage. The remaining FPs, i.e. 19 = 8 + 11, where all 
FPs that are the result of poor manual annotation (see Fig. 3) - 8 FPs are resulted in the 
first stage (which are not forwarded to the CNN stage), and 11 FPs are obtained at the 
second stage of the HCM (from vague face candidate regions). Similar arguments are 
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valid for the FDDB where from 54 FPs there are 14 (i.e. 13 +1) true FPs while the 
remaining 40 (i.e. 28 + 12) FPs are the result of poor manual annotation. 

 

 

Fig. 3. Images, detected by the HCM, which are not manually annotated as faces (ground truth). 

Faces detected at the first stage (first 8 images) and at the second stage (11 images) in the AFW 

test set (first row); Faces detected by the HCM at the first stage (28 images in the second row) 

and 12 images in the third row for FDDB test set.  

When HCM is compared with 2SCM on the AFW test set, the FNs at the second 
stage are reduced by more than 1.71 times (from 48 to 28 FPs), while the FPs are the 
same (23 FPs). Note that most FP face detections (19 from 23 FPs for the second stage 
of HCM) are due to the poor annotation of the AFW test set by humans as was noted in 
[21]. The CNN can detect "difficult faces" that are missed by most human annotators, 
which increases FPs. The results obtained for the FDDB test set are given in Table 3. 
When the HCM is compared with 2SCM on the FDDB test set, the FNs are reduced by 
more than 1.19 times (from 1081 to 901 FNs), while the FPs are decreased by 2.25 
times (from 122 to 54 FNs). The results in terms of precision and recall are given in 
Table 3. 

Our proposed HCM face detector achieves face detection results comparable to the 

results of the state-of-the-art CNN detector. The main advantage of the HCM is that it 

has CPU face detection time that is about 15 times faster than the CNN run on a sin-

gle CPU (image resolution 768x1024). CPU face detection time for the HCM is com-

parable with the CNN detection time when using a GPU (384 cores). An illustration of 

results of the HCM applied on image from Fig. 1. is depicted in Fig. 4. 

 

Table 2. Results of the experiments performed on AFW test set. 

Test set AFW [14] 

Number of images 205 

Number of faces 468 

   Method Thresholds FN FP Precision Recall 

1 NPD θNPD = 0 28 783 0.360 0.940 

2 DPM θDPM = − 0.65 161 72 0.810 0.656 

3 CNN θCNN = 0.4 7 23 (01)) 0.952 (11)) 0.985  

4 2SCM 
θ1 = 44, θ2 = 5, 

θ3 = − 0.65 

48 

(28+20) 
23 0.948 0.897 

5 HCM 
θ1 = 5, θ2 = 67, 

θ3 = 0.4 
28 

23  

12(42)) + 11(02))  

0.952 

(0.9912))  
0.940 

   1) Please see iii) Section 4, 

   2)  See v) Section 4. 
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Table 3. Results of the experiments performed on FDDB test set 

Test set FDDB [15] 

Number of images 2845 

Number of faces 5171 

  Method Thresholds FN FP Precision Recall 

1 NPD θNPD = 0 857 1902 0.694 0.834 

2 DPM θDPM = − 0.65 1250 63 0.984 0.758 

3 CNN θCNN = 0.4 778 29 (01)) 0.993 (11)) 0.850 

4 2SCM 
θ1 = 44, θ2 = 5, 

θ3 = − 0.65 

1081 

(857+224) 
122 0.971 0.791 

5 HCM 
θ1 = 5, θ2 = 67, 

θ3 = 0.4 

901 

 

54 

41(132))+13(12)) 

0.988 

(0.9972)) 
0.826 

             1) Please see iii) in Section 4, 

  2)  See v) Section 4. 

 

 

 

Fig. 4. Example of the results of the HCM (applied on the AFW test set). The green squares 

denote ground truth, the red true positive, and the blue squares denote false positive. The values 

NS and CS correspond to ScoreNPD(I, Si) and ConValCNN(I,Si), respectively.  
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Fig. 5. The results of experiments for the AFW and FDDB test sets. The results of experiments: 

(a) and (e) NPD detector; (b) and (f) DPM detector; (c) and (g) CNN detector; (d) and (h) 

2SCM detector; (i) and (j) the proposed HCM detector; (k) precision and recall of experiments 

for (a)-(d), (i) for AFW test set; (l) precision and recall of experiments for (e)-(h), (j) for FDDB 

test set. Working point WP and true working point TWP correspond to results obtained with 

HCM parameters (thresholds: θ1 = 5, θ2 = 67, θ3 = 0.4) for ground truth and manually verified 

annotation, respectively.  
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5 Conclusion 

In this paper, we have proposed the hybrid cascade model HCM for unconstrained 

face detection. The first stage of the model is based on the NPD detector, and the 

second on the deep CNN-based detector. The model is introduced to reduce FP face 

detections, but to keep FNs as low as possible. This is achieved by conditionally for-

warding the outputs of the NPD detector that represent vague face candidate regions 

to the CNN stage. The condition for forwarding is based on a value of the NPD detec-

tor score. The arguments for using the proposed model are: 1) the NPD detector is 

used at the first stage of the HCM because it is much faster (about 15 times) than the 

CNN for face detection and localization on a single CPU; 2) the CNN detector is used 

conditionally as a post classier and operates only on a small number of rescaled 

vague face candidate regions which are the outputs of the NPD detector. This enables 

effective implementation of a second stage of the HCM. The achieved time perfor-

mance is comparable to the NPD which is considered one of the fastest state-of-the-

art detectors [4]. The HCM is suitable for mobile and embedded platforms. 3) NPD 

and CNN detectors use features which are uncorrelated (normalized pixel differences 

vs. convolution-based features) what makes the HCM more robust then the NPD.  

Experiments performed on the AFW test set showed that FPs were reduced by 

more than 34 times (from 783 to 23 FPs), while FNs were not increased compared 

with the NPD detector for the originally proposed threshold [4]. For the FDDB test 

set, FPs were reduced by more than 35 times (from 1902 to 54 FPs), while FNs were 

increased 1.05 times (from 857 to 901 FNs) for the same NPD threshold. We are 

aware that the CNN-based detector applied on the whole image outperforms (in terms 

of the Recall and Precision) the HCM, but the CNN computational load is about 15 

times higher than the computational load of the HCM. Our future work will aim to 

improve the cascade model to decrease the number of false negative face detections 

and introduce the stage for face pose estimation. 
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